会员
光荣与梦想:互联网口述系列丛书·张树新篇
方兴东主编计算机网络/计算机理论、基础知识· 6万字
更新时间:2019-07-25 11:43:36
最新章节:项目资助名单开会员,本书免费读 >
“互联网口述历史”项目是由专业研究机构——互联网实验室,组织业界知名专家,对影响互联网发展的各个时期和各个关键节点的核心人物进行访谈,对这些人物的口述材料进行加工整理、研究提炼,以全方位展示互联网的发展历程和未来走向。人物涉及创业与商业,政府、安全与法律等相关领域,社会、思想与文化等层面。该项目把这些亲历者的口述内容作为我国互联网历史的原始素材,展示了互联网波澜壮阔的完整画卷。
上架时间:2018-12-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
最新章节
方兴东主编
主页
同类热门书
最新上架
- 会员
Web 3.0:具有颠覆性与重大机遇的第三代互联网
《Web3.0》针对当下火热的Web3.0话题,介绍Web3.0的相关专业知识、技术实现方法及应用前景。全书共9章,第1章介绍了Web3.0的基本知识;第2、3章介绍了Web3.0的基础技术栈和拓展技术栈;第4章介绍了Web3.0的生态构建,包括去中心化自治组织、开放式金融、加密货币、代币经济与数字市场、数字身份、创造者经济、注意力经济等;第5章阐述了Web3.0的行业应用;第6章介计算机13万字 - 会员
偏最小二乘法优化及其在中医药领域的应用研究
本书内容是在充分利用偏最小二乘原理优势的基础上,重点研究改进与优化偏最小二乘的不足方面,使其更好地适应中医药数据分析。主要内容包括分别引入非径向数据包络分析和降噪稀疏自编码器优化偏最小二乘的噪声处理,使其处理缺失值和噪声更有效;分别引入特征相关、L1正则项和灰色关联优化偏最小二乘的特征提取,实现有效降维和提取特征子集;分别融合受限玻尔兹曼机、稀疏自编码器、深度置信网络提取非线性成分,优化偏最小二乘计算机10.5万字 - 会员
细说机器学习:从理论到实践
《细说机器学习:从理论到实践》从数学知识入手,详尽细致地阐述机器学习各方面的理论知识、常用算法与流行框架,并以大量代码示例进行实践。本书内容分为三篇:第一篇为基础知识,包括机器学习概述、开发环境和常用模块、特征工程、模型评估、降维方法等内容。本篇详细而友好地介绍机器学习的核心概念与原理,并结合大量示例帮助读者轻松入门。第二篇为算法应用,涵盖机器学习最重要与高频使用的模型,包括K-Means聚类、K计算机17.6万字 - 会员
重构知识:在线知识传播的疆域、结构与机制
《重构知识:在线知识传播的疆域、结构与机制》旨在探究社会化媒体知识分享平台的知识分享行为规律、知识疆域结构特征、知识构建的动力机制以及知识普惠的技术实现。依托于当前人文社会科学新文科建设总体要求,本书基于传播学理论视野,利用信息科学计算技术,结合复杂网络分析框架,致力于解决当前传播学现实问题。具体而言,本研究旨在探究基于互联网技术的知识传播,提高知识传播效率,推进知识普惠,探究信息技术能够惠及广泛计算机11.1万字 - 会员
Audition音频编辑标准教程(全彩微课版)
《Audition音频编辑标准教程(全彩微课版)》以AdobeAudition2022为写作平台,用通俗易懂的语言、精心挑选的实用技巧、翔实生动的操作案例,对AdobeAudition这款主流的音频处理软件进行了详细的阐述。全书共9章,内容涵盖音频知识、Audition入门基础、工作区与显示控制、音频的录制、音频的编辑、噪声的处理、效果器的应用、多轨会话、后期混音及输出等方面的知识、技巧,在需计算机8.1万字 - 会员
UI设计基础与应用标准教程(全彩微课版)
《UI设计基础与应用标准教程(全彩微课版)》围绕UI设计进行编写,以理论+实操为编写原则,用通俗易懂的语言对UI设计的相关知识进行详细介绍。《UI设计基础与应用标准教程(全彩微课版)》共9章,内容涵盖UI设计学习入门、图标设计、控件设计、动效设计、App界面设计、网页界面设计、软件界面设计、界面的标注与切图、综合实战案例等。在介绍理论知识的同时,穿插了大量的实操案例,第1~8章结尾还安排了实战演练计算机6万字 - 会员
SPSS统计分析标准教程(实战微课版)
本书以SPSS28.0中文版为平台,以实用为原则,由浅入深,全面系统地介绍SPSS的基本功能和实际应用方法。本书涉及面广,从SPSS基本操作开始介绍,覆盖大部分常用功能和高级统计分析方法。本书共11章,内容包括SPSS基础知识、建立与整理数据、SPSS基本统计分析、假设检验、非参数检验、方差分析、相关分析、回归分析、聚类和判别分析、统计图形和SPSS数据分析综合应用。在介绍的过程中,图文并茂地对计算机10.2万字 - 会员
深度强化学习理论与实践
本书比较全面、系统地介绍了深度强化学习的理论和算法,并配有大量的案例和编程实现。全书核心内容可以分为3部分,第一部分为经典强化学习,包括第2、3、4章,主要内容有动态规划法,蒙特卡洛法、时序差分法;第二部分为深度强化学习,包括第6、7、8章,主要内容有值函数近似法、策略梯度法、策略梯度法进阶;第三部分重点介绍了深度强化学习的经典应用——AlphaGo系列算法。另外,作为理论和算法的辅助,第1章介绍计算机12.5万字 - 会员
多源信息融合推理与应用
本书共共15章,主要包括多源信息融合处理理论与方法及多源信息目标检测、识别和应用两部分内容。书中具体讲述了多源信息融合处理的基本概念以及多源信息融合发展的核心理论方法,如Dempster-Shafer证据理论等;介绍了多源高冲突信息鲁棒性证据推理方法、多辨识框架下异构证据融合方法以及多值迁移融合方法等多种融合技术;给出了多源信息融合的典型应用,特别是在不确定数据分类、多源信息融合检测与识别领域的实计算机17万字