会员
AI落地:让人工智能为你所用
王海屹更新时间:2024-07-25 16:15:41
最新章节:封底开会员,本书免费读 >
面对人工智能(AI)这一技术名词和概念,你是否以为它门槛高、特复杂、难以落地?面对人工智能产品爆发式涌现,你是否担心它会夺走你的工作,进而产生恐慌和忧虑?面对日常见到的“人工智障”工具,你是否对人工智能产生过质疑?进入人工智能时代,你能够做什么?需要掌握哪些技能?如何让技术为自己服务?本书结合人工智能落地的方法和案例,采用通俗易懂的语言,为你揭开人工智能的面纱,教你寻找在生活中、工作中适合人工智能落地的场景,以及评价其价值的方法,助你实现降本增效的目标。书中不仅将算法原理和思维融入日常熟知事物做对比,以便让你了解技术,还总结了人工智能落地的步骤和评估方法来帮助读者找到人工智能落地潜在的机会,使读者能够在阅读完本书内容后,对于人工智能的应用场景及如何实际操作成功落地部署有一定的了解。此外,阅读本书,读者还可以了解目前人工智能技术的局限及后续的技术发展方向。本书适合正在或希望从事人工智能产品设计和运营的人员、与人工智能相关的技术人员、想认识和充分了解人工智能发展的人员阅读。关注作者公众号:AI落地方法论,获得课程、AI体验工具。
品牌:机械工业出版社
上架时间:2024-02-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
王海屹
主页
同类热门书
最新上架
- 会员
人工智能新时代:核心技术与行业赋能
本书以人工智能为核心,上篇讲述了人工智能理论知识及发展蓝图规划,目的是帮助读者认识人工智能,找到入局人工智能领域的途径和方法;中篇罗列了可以为人工智能赋能的前沿技术,包括NLP、机器学习、大数据、物联网、区块链等;下篇总结了人工智能对交通、农业、医疗、制造、教育、金融、文娱等行业的影响和作用,旨在让读者了解人工智能是如何在这些行业实现商业化落地的。本书从多个角度出发,描绘了一幅完整的人工智能发展蓝计算机15.8万字 - 会员
巧用ChatGPT进行数据分析与挖掘
这既是一本引导读者如何使用ChatGPT低门槛、高效率学习Python数据分析与挖掘方法的著作,又是一本指导读者如何使用ChatGPT精准、高效地进行Python数据分析与挖掘实操的著作。从读者对象的角度看,本书既大大降低了没有编程经验的读者学习Python数据分析的门槛,又为有经验的Python数据分析师提供了大量实用的AI数据分析技巧,帮助他们快速转型为具备AI能力的数据分析师。从核心内容的角计算机16.9万字 - 会员
情感计算
在人工智能的研究中,既包括对于人类理性思维的模拟,还包括对人类感性思维的计算。本书重点讲述的文本情感分析技术就属于后者。该技术源于自然语言处理领域,但也有别于一般的自然语言处理任务。文本情感分析面向的处理对象是社交媒体中产生的用户评论文本,该文本的特点是带有大量的用户主观情感信息,因此该技术的核心是通过自动分析评论文本来进行情感的理解。文本情感分析技术已有20余年的研究历史,凝聚成了多项研究任务和计算机23.3万字 - 会员
ChatGPT:AIGC时代商业应用赋能
2023年以来,OpenAI相继发布了聊天机器人模型ChatGPT、新一代多模态大模型GPT-4等产品,以强大的能力俘获了大量用户,颠覆了用户对于AI的认知。本书以ChatGPT为中心,对ChatGPT的相关知识进行详细的讲解。本书共12章,前5章从ChatGPT概述、技术底座、内容变革、产业格局、商业展望5个方面对ChatGPT进行了解读,帮助用户全面了解ChatGPT,对其形成完整的认知。第6计算机12.8万字 - 会员
从零开始大模型开发与微调:基于PyTorch与ChatGLM
大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。《从零开始大模型开发与微调:基于PyTorch与ChatGLM》共18章,内容包括人工智能与大模型、PyTorch2.0深度学习环境搭建计算机12.8万字 - 会员
奇点到来:AIGC引爆增长新范式
增长是企业利用计算机、大数据、人工智能等新技术实现经营增长的新思路和新方法,本书作为该领域的入门级读物,介绍了AIGC在增长领域的技术和实战应用。本书分为4部分,第1部分、第2部分、第4部分主要针对有兴趣了解AIGC背后技术原理、增长模式的变化以及截至2023年3月业界、学术界的最新技术进展的读者;第3部分包含AI的基础知识、基础模型,并从实战应用角度介绍作为应用开发者如何高效上手与利用最新的开源计算机21.9万字 - 会员
机器学习中的统计思维(Python实现)
机器学习是人工智能的核心,而统计思维则是机器学习方法的核心:从随机性中寻找规律性。例如,利用损失最小化思想制定学习策略,采用概率最大化思想估计模型参数,利用方差对不确定性的捕捉构造k维树,采用贝叶斯公式构建分类决策模型,等等。只有树立正确的统计思维,才能准确高效地运用机器学习方法开展数据处理与分析。本书以统计思维的视角,揭示监督学习中回归和分类模型的核心思想,帮助读者构建理论体系。计算机18万字 - 会员
华为MindSpore深度学习框架应用开发实战
全书从逻辑上共分3部分。第一部分由第1章和第2章组成,介绍深度学习的基础理论、MindSpore总体架构和编程基础。第二部分由第3~8章组成,介绍MindSpore框架各子系统的具体情况,包括数据处理、算子、神经网络模型开发、数据可视化组件MindInsight、推理、以及移动端AI框架MindSporeLite。第三部分由第9章和第10章组成,介绍使用MindSpore框架开发和训练的经典深度计算机13万字 - 会员
ChatGPT漫谈
本书深度探讨了构建和训练ChatGPT模型涉及的核心技术,以及ChatGPT在各种实际应用中的作用。全书精心划分为三部分,其中第1章为第1部分,第2章为第2部分,第3章和第4章为第3部分。首先,详细阐述了机器学习的历史演变与各种学习范式,同时也揭示了在人工智能生成内容(AIGC)领域下,图像处理和自然语言处理技术的历史发展趋势;接下来,对ChatGPT的运行机制和关键算法进行深度解析,包括大规模模计算机10.8万字