![高等数学·上册(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/227/26179227/b_26179227.jpg)
习题1
1.求下列函数的定义域:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00062002.jpg?sign=1738886525-x6zXHJ3JD2mC7RLeoYwC6Thc1QMTBXLb-0-d16dfb62fb734f1b5bf91a190aca285c)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063001.jpg?sign=1738886525-RTyu5WJWewx2c19ZHfz1Khc65cM4kNPn-0-a02e5add60e6e29669648fbb8919809c)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063002.jpg?sign=1738886525-lv63oqBwwUUBRkRnWeXykosJcDiPiUBW-0-99bc7cd4d44235ff3cebf822aa97d5af)
2.判断下列每对函数是否是相同的函数,并说明原因.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063003.jpg?sign=1738886525-r3lsK70jJrpF97NaFRzZIPXb8tUrimet-0-0b9b7ef5aab088a168845b00723e5cba)
(3)y=2lgx与y=lgx2; (4)y=sin2x+cos2x与y=1;
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063004.jpg?sign=1738886525-FdHMayDZOkXSX6LHj86n0gufHqlXy8bA-0-0b9d9ebd51e712a8688575c5b6a0f7c0)
3.指出下列函数的复合过程:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063005.jpg?sign=1738886525-Ia71Xbf864ihkcw4m4ydcXmnL2cUfwzT-0-d9f2c56c10afda1743f3f692393fe56d)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063006.jpg?sign=1738886525-Or78S2tLcwDzSNG7P79Y9TbKqwtnjRkd-0-88b8df67a3ff7159a14be9d503311d74)
(5)y=xsinxlnx; (6)y=lnsin2x.
4.判断下列数列的敛散性,若收敛,求其极限.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063009.jpg?sign=1738886525-PvLRIUpchoa1eyc7jCcmUHQDKzEK1Njk-0-6df034f5e76b9b180e7743b01346db79)
5.求下列极限:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063007.jpg?sign=1738886525-RZhRH9U1Exw1Vmer2wemyApgBumrhmN6-0-624f281f9ecee4847b25718246ae1ea2)
6.已知,求常数a,b.
7.设
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00064001.jpg?sign=1738886525-SExhspCesC9m1PtmRxAtOA4Z8pWWPoV3-0-a39e04fd23e5109be9410972289fd591)
求:(1) ;
(2)f(g(x)),.
8.求下列极限:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00064004.jpg?sign=1738886525-tv6kLK29sWOPmGE7VYAfHhLr0I2MduQW-0-a06dbd2ebd31f0d6dfee58672562fda5)
9.设a1=10,,试证数列{an}极限存在,并求此极限.
10.证明
11.设函数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00064007.jpg?sign=1738886525-Ixu9qnT7NKdz9woSK1WfCV6wmPphwnqF-0-5a23b81a55e9f534eaa3b6ba77dbb7bf)
讨论函数f(x)在点x=0处极限是否存在.
12.证明无穷小的等价关系具有下列性质:
(1)α~α(自反性);
(2)若α~β,则β~α(对称性);
(3)若α~β,β~γ,则α~γ(传递性).
13.求下列极限:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00064008.jpg?sign=1738886525-j94LRQkuuoNHwuIkuaIprPEyOVS5dOa0-0-907c34e1ed762473e929413eced59161)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00065001.jpg?sign=1738886525-BtKRw5YoPBsUxQo2EMirK8jbjMaQ4aEF-0-e48402745e1410c96cc251f24b0661f4)
14.当x→0时,(tanx-sinx)与xk是同阶无穷小,求k值.
15.求函数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00065002.jpg?sign=1738886525-2IiXIToeKNJZlF80z6ArTtmBi3NkfjS5-0-b436b59b6b8aa68800e2afb3770f5ec2)
在分段点处的极限.
16.求
17.确定常数a,b,使.
18.已知为有限数l,求常数a,l.
19.已知
20.设.
21.已知,求常数a.
22.求下列函数的间断点,并判断其类型:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00065009.jpg?sign=1738886525-U72mg3bJfclD8h7zSKYTNaS5gleQGHkY-0-6dd75a7a266dd56236f4c3550ff07e39)
23.设函数,求函数f(x)的间断点,并指出类型.
24.讨论函数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00066002.jpg?sign=1738886525-SerPpaf9nK0k5PgnAGUZ7m7fB5KOePHj-0-b711f3e84339f26343f532d02b0f7b78)
在点x=0处的连续性.
25.设函数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00066003.jpg?sign=1738886525-3pmkUGxRiPypsWqnJufDxB23OdRyqvGw-0-4c68436913a4bceaa8adfdda4c38733d)
确定常数a,b,使得f(x)在点x=0处连续.
26.(1)设,证明
,并问其逆是否成立?
(2)设f(x)在点x0连续,证明|f(x)|在点x0连续,并问其逆是否成立?
27.求函数,并确定常数a,b使函数f(x)在点x=-1,与x=1处连续.
28.证明方程x·2x=1至少有一个小于1的正根.
29.设函数f(x)在[a,b]上连续,且f(a)>a,f(b)<b,试证在(a,b)内至少存在一点ξ,使得f(ξ)=ξ.
30.设函数f(x)在[a,b]上连续,且a<c<d<b,证明:
(1)存在一个ξ∈(a,b),使得f(c)+f(d)=2f(ξ);
(2)存在一个ξ∈(a,b),使得mf(c)+nf(d)=(m+n)f(ξ).
31.求证:方程ex+e-x=4+cosx在(-∞,+∞)内恰有两个根.