![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
第十五章 第一型曲线积分与第一型曲面积分
§1 第一型曲线积分
我们已经知道怎样计算连续可微曲线的弧长(第六章§3).在本节中,将对曲线孤长的概念作更细致的说明,然后讨论第一型曲线积分.
l. a可求长曲线
考查R3中的一条连续的参数曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0192.jpg?sign=1738970744-VUQTN9WesEffsu2dM8P3PwVnWJ2ZqfR5-0-70f83146409f65c0837cb909a68c5eb1)
如果曲线(1.1)的起点与终点重合,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0193.jpg?sign=1738970744-ZQYEtj9FhYQW2FvgHC7lLbNNifnegTzl-0-852bc784f408104e75c0a63fb0050c53)
那么我们就说这是一条闭曲线,如果曲线(1.1)没有自交点(即除非是,只要
,就有
,那么我们就说这曲线是简单曲线.参数方程(1.1)用分量表示就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0197.jpg?sign=1738970744-WhOpqZxtc3vgQ7ynGtbZAvUlyL9ex6u3-0-820684df123ba315a7c591e970be63a9)
设和
是曲线(1. 1)上的两点,则联结这两点的直线段的长度可以表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0200.jpg?sign=1738970744-aZxBVUOk7h1aMTnfyFzga9YHRkaXICfA-0-0f7be160cb4c0bc155f66069d1757954)
也就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0030_0201.jpg?sign=1738970744-Yd3iVlcalROQH0ngKj05v0YihVqSelpd-0-6e94f08dd349c638575683c83e06bf73)
假设γ是一条简单曲线,它的参数方程是(1.1).考查参数区间[α,β]的任意一个分割
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0202.jpg?sign=1738970744-JYKsviaSZvLhtNOgP8UuTkm3mAMvrrCV-0-472327b860af4cd8b48954e245b8a3b1)
对于k=1,……,n,将曲线γ上参数为tk-1与tk的点用直线段联结起来,我们得到内接于γ的一条折线.这折线的长度可以表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0203.jpg?sign=1738970744-6wwZBn6zmJFTiGzKU0OKaHb6es4voXIn-0-2103e1f35ab67a68cbf0c390695c63f8)
定义1 如果
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0204.jpg?sign=1738970744-blJ1dAXmpGGFRqKr0dw2uJUucdI0Vk3Z-0-11d7e30e93e216b9d2598be4ca0bfb8e)
那么我们就说γ是一条可求长曲线,并约定把
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0205.jpg?sign=1738970744-RtC7EgRzwu7xVzwL878r2XCEeYN3fg4k-0-2eb4f6c9123ad2357e40cb5c66505335)
叫做曲线γ的孤长.
定理1 设γ是用参数方程(1.1)表示的一条简单连续曲线,则γ可求长的充分必要条件是存在有穷极限:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0206.jpg?sign=1738970744-h9vKiSND15DBC8fYJhZT4rf0AKLNkGpR-0-534e5b0f15b70cbce6caf017396cc5ef)
其中
证明 充分性设存在有穷极限
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0208.jpg?sign=1738970744-BowYbTeDeGU9mXdYors4KVeZ65SVl8u1-0-558778399c066b12d97b287203d4aec6)
则对ε=1,可选择δ>0,使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0209.jpg?sign=1738970744-fuNa0pEqrmTlcVrAoym7jcFQoNjQk0OX-0-9d1faccda31b575c5c1c9f6d045136db)
现在设π是区间的任意一个分割.我们可以用增加分点的办法将进一步细分为π',使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0210.jpg?sign=1738970744-Fk5lm5pXdGcQAB1dQPoyWs3CDRefTsm6-0-84f08097138938bce219d23ae7edd798)
于是就有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0211.jpg?sign=1738970744-BibwOI10PBdSEMrW2cfajEDqiiHA58Yo-0-53c3b18749d219ff733f0b345569a5ee)
这证明了
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0212.jpg?sign=1738970744-QCaOg2stLvjFntnUZo8xqZVgCWzeaBR5-0-4c1f4d7ab5a3fcb3e3ffdfc5ab60e2bc)
必要性如果
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0031_0213.jpg?sign=1738970744-YRGgeev0QsBcnSkUH4JQA5Q0z0UVeimk-0-603c86c6d448226274b0a3a00d63cca5)
那么对任何ε>0,存在[α,β]的分割
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0214.jpg?sign=1738970744-fCyzUxXAXHgMdbf5GAlh6SvS9S4Lucmz-0-4c3ff382d22006809f67c9799c29a084)
使得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0215.jpg?sign=1738970744-goFGEOS6E72kOzhGdq1OdL9oFkq8fsnY-0-80d232e1e610b8b98373efb7a100bfc6)
由于函数r(t)=(x(t),y(t),z(t))在闭区间[α,β]一致连续,存在δ,0<δ<|π0|,使得只要
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0216.jpg?sign=1738970744-VUuCHOuG6n27dhMlEgrXVGpoyFuQ4zUN-0-4c2909e89c77b912e47b08b74b22686e)
就有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0217.jpg?sign=1738970744-5sFPbhV4xUPmQBcZCTBfJXEHCKMix06o-0-97ca3e615c7641a7b0c9c983eb485218)
(这里m是分割π0在(α,β)内的分界点的数目).现在设π是[α,β]任意一个分割,满足这样的条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0218.jpg?sign=1738970744-4XndrOuyuUpjga6c49AoQHwPOxaXKLEh-0-4600d3870b9addec2f0d0a72f449f11f)
将π0和π的分点合在一起,得到[α,β]的一个分割π1,显然有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0219.jpg?sign=1738970744-zLHD3Rof3Abp6W3ycR0iqO0BxZCGaTao-0-f6a15726a1c8c01dce2a20411f7876e2)
下面来证明
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0220.jpg?sign=1738970744-lWkwNJk4HcTZTEYsxmsU1uFXBrCjuRHe-0-3b5102dbf76d406c828727d1c43a0289)
为书写简单,我们引入记号
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0221.jpg?sign=1738970744-b60V1pRQYMVEirbb4GoxineQFubOzVCr-0-dc1402a14b9df6ab33f42cb7c406df80)
和式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0222.jpg?sign=1738970744-LJ9jsbhGqsKBeuvdC8onLgJPXKas1G2m-0-42e90bd1430379cef9337aa870637c6b)
可以拆成两部分:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0032_0223.jpg?sign=1738970744-b7azApqISLk3GabuUpL2PcfdNAdMkINF-0-7760c9e507d1a33b1cebd26f88ef68e8)
其中第一部分所涉及的参数区间[tj-1,tj]内部不含有π0的分点;第二部分所涉及的参数区间内部含有π0的分点(后一类区间总数不超过m个).和数λ(γ,π1)与和数λ(γ,π)相比较,差别只是第二部分和数中的每一项ψ(tk-1,tk)被改变为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0224.jpg?sign=1738970744-0XzUmr4e0MHIOvGiQF5yfolGGJiKXPBZ-0-5c4a6afa902cacfd8e8ce0541562d374)
因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0225.jpg?sign=1738970744-MuEtdX7UC18R3ChsZX5P5LEEIfpVZDQt-0-6081a5e181ca2f9f439164ad235e5986)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0226.jpg?sign=1738970744-pnA305N9a9azS78bE2hVPAqmHu0lYDK0-0-e16a6f5bb982cf68129df42f616e4b20)
由此得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0227.jpg?sign=1738970744-URpH5vSmC20BDJ24GnXTbkLWh5eAccTH-0-a5ed93e8c2f5775f60c5f556cfcb2fbc)
我们证明了
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0228.jpg?sign=1738970744-kU3SgTW3aSv3DQa6cMyK0EO5e6zE8ITw-0-bdc0ead6d8107e489d4533f830d8497a)
推论设γ:r=r(t),t∈[α,β],是一条连续可微(或分段连续可微)的参数曲线,则γ是可求长的,并且
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0033_0229.jpg?sign=1738970744-lVA2JxymrXbCvnEnPZcYbg0ImQKoCVVO-0-adcb0f8fddfecd2dbacbd371c40cda3c)
l. b第一型曲线积分
设有一段质地不均匀的直金属线L放置在0 X轴上,所占的位置是闭区间[a, b].设这金属线在点x处的线密度等于ρ(x)[1].我们来求金属线L的质量m.这是一道典型的定积分应用题.利用微元法,很容易写出计算公式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0231.jpg?sign=1738970744-fxpEF38s7DHwgV2jsRxHfrIGJ8gYTXVN-0-a985036b1af32fdc23db1402a5bc8658)
再来考虑一个类似的问题:如果L不是直金属线,而是一段弯曲的金属线,那么L的质量又该怎样计算?为了解答这问题,我们用一串分点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0232.jpg?sign=1738970744-07jHLi8KiwDFkIFW9f9eC9IRszXqW4hs-0-7eec0ea1653dec972d97214b5deb45d9)
把L分成n小段(这里A和B是L的两端点).在Pj-1到Pj这一小段曲线弧上任意选取一点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0233.jpg?sign=1738970744-LkLCj9niyJR5qC6YnAgd5DCjdIPulONv-0-20f742de4c0e0a4767af0445f7e2da5a)
并把这小段曲线弧的长度记为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0234.jpg?sign=1738970744-6tA5uqtwVozPAoiGAB8u9z6sNPPVMq7m-0-3080bd9cda32434d0b8103c15d27392e)
于是,从Pj-1到Pj这一小段金属线的质量可以近似地表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0235.jpg?sign=1738970744-Uf5GHVjrYTzgHXnvC28IQZl5uFOZwieY-0-350704a7d92f617f26ef8e105f35b4de)
整段金属线L的总质量可以近似地表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0236.jpg?sign=1738970744-oKkSSMeqVt4EzcibnSGoBMgRl6x3He6y-0-543acdebb3feac29bab90e2ccd7ad157)
如果所分弧段的最大长度趋于0:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0237.jpg?sign=1738970744-50zkjsZLU23PXkmogvF337yfqLvn3goy-0-297308703e881baa9baa3b96b7d1bd21)
那么(1.2)式的极限就应该是所求的质量:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0238.jpg?sign=1738970744-YLg0kaSInfA1u7U23n9HbdyDzrqDAhUC-0-091501c8a7441b1d7d1a41252cd811dd)
这里的“分割——近似——求和——求极限”的手续,与定积分的情形十分类似,但却是沿着一条曲线实施的.由此可以引出第一型曲线积分的一般定义.
定义 2设L是R3中的一条可求长曲线,函数f(x, y,在L上有定义.我们用依次排列的分点
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0034_0239.jpg?sign=1738970744-MiXnx4PYqC4r1fQGr0dBAvNBAiH1JXX1-0-2d7c48e185921b6106a1fa720c9e1437)
把L分成n段(A和B是L的端点,对于闭曲线的情形认为A=B),约定把从Pj-1到Pj这一小段的曲线弧长记为Δsj,并记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0240.jpg?sign=1738970744-jbZZ1QUzrgSKAbJZrSalGOcqf72JUMiE-0-9a3021320ea3bd1b007e8e0814c0975c)
在弧段Pj-1Pj上任意选取点Qj(j=1,2,……,n),然后作和数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0241.jpg?sign=1738970744-niCKMaZ4D6fB6owC3zVqcOTEGWNn0aQ7-0-ce09ac78d819458e82e7e628236f16ee)
如果当d→0时和数(1.3)收敛于有穷极限,那么我们就把这极限叫做函数f沿曲线L的第一型曲线积分,记为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0242.jpg?sign=1738970744-SLoWxIKRyBJbbsAeBgNKCqzLXFl2OC78-0-1133ca2389e13c81162036c955bb8900)
注记 我们把这种对弧长的积分叫做“第一型”曲线积分,是为了与以后将要学习的另一种曲线积分相区别.
读者容易看出:与定积分的情形类似,作为和数的极限的第一型曲线积分,具有线性、可加性等性质.
如果以弧长s作为参数把曲线L的方程写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0243.jpg?sign=1738970744-y6Abpzgut3NegQQWcD6mh9CCvzQkfERP-0-a9dabf00d08c66d990a6a44afba53379)
那么根据定义立即就可以把第一型曲线积分表示为定积分
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0244.jpg?sign=1738970744-2GdLf6uDSecUy8d1VYpAKiOUiWh2vD2d-0-8ab99fe3b95931bfe981e6783370d51e)
非弧长参数的连续可微曲线(或者分段连续可微曲线),可以通过变元替换化成以弧长为参数的情形.我们有以下的计算公式:
定理2 设L:r=r(t),t∈[α,β]是一条连续可微的参数曲线,满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0245.jpg?sign=1738970744-HLgf5DwnS1fpNaNt5S8zBoWZwdtZHPgk-0-ed791f646f73a8e2776c62a29122ffbd)
并设函数f在L上连续.则f沿着L的第一型曲线积分存在,并且这积分可按下式计算:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0035_0246.jpg?sign=1738970744-KTYvIIE5A8cmoU8S2sydsf2LYJtkGRo1-0-ae0771b19b93ccc2cca80ce3a803e66f)
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0247.jpg?sign=1738970744-N1xadQ6niYgtAfJaF1nt5Id5vkCbeVJv-0-b2207abd36f46045f872408d8dcdb734)
证明 在所给的条件下,曲线L是可求长的,其弧长表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0248.jpg?sign=1738970744-Am00ynqI43S1AqkWfjKMnQLeP2KvfHrY-0-050bfaaa744e55c3c077db7d0d48da1c)
并且
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0249.jpg?sign=1738970744-mqBs5THeayAs7jK4ejkOH6LiqRKUz0lW-0-445dc1f8760ee5017675451f3ec33893)
根据反函数定理,参数t是弧长s的连续可微函数:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0250.jpg?sign=1738970744-B4ewyQNPV1WoIJqPZwiRCqmcQk5P7SmT-0-a99214f8b62bbc079c5663bbe973bba2)
于是,我们可以用弧长s作为参数,将曲线L的方程写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0251.jpg?sign=1738970744-odSMYVtTUeK7PfhcjUxhbfrFWjIAMs4w-0-a6476f9b4fdaa0716c3ffe47f81bb637)
函数f沿L的第一型曲线积分表示为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0252.jpg?sign=1738970744-aSnzRQWs9OqIx0VBxA6WMnPKaPD7Q4xe-0-d67e769fadf61036226699e44cfa3b3f)
在上式中作变元替换
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0036_0253.jpg?sign=1738970744-rOikbFCazVTdDpceG9kL0aI7RgDQBKhF-0-eae528c577ce60db9c86ea7047620fdb)
就得到定理中的计算公式.□