![数学分析新讲(第3册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/665/26831665/b_26831665.jpg)
§2 曲线的曲率与挠率,弗雷奈公式
曲率描述曲线弯曲的程度.挠率描述曲线偏离平面的程度——挠曲的程度。这两个量对于描述曲线的形状来说,具有决定性的意义。
2.a几个引理
为了以下讨论方便,我们先介绍几个涉及向量值函数导数的引理.
引理1 对于可导的向量值函数r1(t)和r2(t),我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0066.jpg?sign=1739368504-EhoCBsEmRJIVEAOhsYp5AgqIARFpK8Pu-0-56fbf565cd386094432a7bf3c1c9b06f)
证明 用坐标分量表示(r1(t),r2(t)),然后再利用数值函数的求导法则.请读者自己补充证明的细节.□
引理2 向量值函数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0067.jpg?sign=1739368504-519tXqEUzHmsLRheuVeHiVcbCW3Xe839-0-d4f4916bcad5a932406f31a82db9204d)
保持定长的充分必要条件是:r'与互相垂直,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0068.jpg?sign=1739368504-E0GgcDoBQVxtjcxpTiKELJXSkGNaIROc-0-bc9ccc76c8bd88f933fcc49e1f9d2d45)
证明 我们约定记r2(t)=(r(t),r(t)。显然有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0012_0069.jpg?sign=1739368504-RfViQfgq6vrJtYJRu80rxnMBp2xzCHGh-0-ab8d132d2b98d8142b7a6799abde1593)
根据引理1,又有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0070.jpg?sign=1739368504-QOE4e5ZKh9tVJaZwRtGqTtNChJHysL0D-0-3d2ecb7c48f476e78e677f4a73beb427)
由此就可得出所要证明的结论.□
引理3 设是单位长向量:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0071.jpg?sign=1739368504-an8z7fNiluX9vEsAHtPcUpby5tIgtHHO-0-9dd76d6a6c45947e53ae557daaae9499)
则r'(t)在与r(t)正交的方向上,它的模||r'(s)||表示向量r(t)转动的角度相对于参数t的变化率.
证明 我们用表示从向量r(t)到向量r(t+△t)的转角(图14-1),则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0072.jpg?sign=1739368504-FqudvZ3TokSC0Aw0l1P7i9EPKUZZBPJB-0-a3b47147d5636ac8cc8a677a8f5e8284)
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0073.jpg?sign=1739368504-a1QM7irXw62g5SORJKm4mmd23YkgW8ws-0-97211785519053bcb2efe46a8584fb89)
图14-1
于是有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0013_0074.jpg?sign=1739368504-sLb2g4kLL9JA4FgvmKYA73XvwYAvTOKJ-0-789aa13574e92ae29efde074ee917168)
2.b自然参数,曲率
考查曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0075.jpg?sign=1739368504-wX7Ci2z5K2AzC2VIM02xfThwG5Ml89Yc-0-ea9bd31f25a0b6a9d4753a9af4bd7bec)
这里假设连续可微足够多次,并且满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0076.jpg?sign=1739368504-TtOpw6ULKmANUH3UYjCgoQgJeFv6FgAD-0-cba229e765e380c6ff755236743df116)
曲线(2.1)的弧长可按下式计算
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0077.jpg?sign=1739368504-XzXRQaga9LFQxfqD9l0uuElQGi5czWGu-0-5e922624a8526211abad0964ccb6b5b7)
这里的t0是量测起始点的参数值.因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0078.jpg?sign=1739368504-wG38O8NCx8RutpBOO08bXXaQ7VMUfVMf-0-3b2b5641c864230d2aa2f8e00374509e)
根据反函数定理,可以断定t是s的连续可微足够多次的函数:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0079.jpg?sign=1739368504-b5uIzh6c9ygRkuxpzA9esAvanduTotTi-0-3a20f7c68c70b8c2a91d06a5cedff641)
于是,可以用弧长作为曲线的参数,把(2.1)式改写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0080.jpg?sign=1739368504-IC3G1QIiueUJ7CqTtmxQpVhnof1a619y-0-a058119d901bd1b2ec2e834d6b1921af)
以下,我们把弧长参数s叫做自然参数.为避免记号繁琐,对于不致于混淆的情形,就简单地把(2.3)式写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0081.jpg?sign=1739368504-NauNRLPxRrd2q1mEaXbeOkuwonW6fYb2-0-d263add94fb5fb91ff92b97c5483c466)
在本章中,我们约定用圆黑点“·”表示对弧长参数求导.于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0082.jpg?sign=1739368504-FNSzzQ1kqGun8cOhR5OQNaea8QKrlLfA-0-fa635d65d32a1b17c2406807de904355)
由此得知,r是一个单位长向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0083.jpg?sign=1739368504-jndGGP6fyoi0Q0ObzXfa8tQIRgZ4Ennq-0-ea4e31c3e5f0eee4d0fd2973bf04e703)
于是,r(s)是曲线(2.4)在r(s)处的单位长切向量.我们约定用记号
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0014_0084.jpg?sign=1739368504-aH3bwjBbeh58c1np0yGrnjk8kVtqhg3Z-0-402dd53d19cb9c50f259598ba916250b)
表示这单位长切向量。
请注意,为了讨论方便,我们约定把切向量看成自由向量,因而可以把各切向量的起点都移到坐标原点.读者以后逐渐能体会到这种看法的好处.
将T(S)=再对s求导,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0086.jpg?sign=1739368504-B1Y2tNox6kWvLjKdMhoSWSHtwIQjXo0s-0-32c7772715a34da1dce02d38ecb46967)
既然T(s)=是单位长切向量,那么向量
就在与T(S)正交的方向上,并且
表示切向量T(S)对弧长S的转动速率
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0090.jpg?sign=1739368504-u0ML2BGyXfnV65WKiXsJtDaCyuFYE9rb-0-fe33391be927f56fb591bb0bd330e382)
——请参看图14-2.
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0091.jpg?sign=1739368504-4HI6m42fueSYoWOokLTCMXeg62MPKQ0E-0-53376ea2ff7a930eb815e7c21fb1a7db)
图14-2
我们把切向量T(s)相对于弧长s的转动速率叫做曲线(2.4)在给定点的曲率,并把它记为k(s)于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0093.jpg?sign=1739368504-J6KaLFHAChCXiOLpR7vqCf96OESGD2Zi-0-ee5a4ced2968468f4cac4fa3d104b004)
曲率K(s)的倒数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0015_0094.jpg?sign=1739368504-t4TqTSxFVsPAcNUNf0PAreSG5qE3XLLu-0-627cc79968c1394d15baead7651ce9eb)
被称为曲率半径。与κ(S)一样,曲率半径ρ(S)也表示曲线弯曲的程度。只不过ρ(S)越小表示曲线弯曲得越厉害。对于κ(s)=0的情形,我们约定ρ(S)=+∞。
例1 考查圆周的方程
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0095.jpg?sign=1739368504-Zmmxx6MNmxC2PH0sH90VOUL7gMDqx2RT-0-eb1bf139c65ef7bb8b6e7eff0c31375f)
换成弧长参数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0096.jpg?sign=1739368504-qN4C1l1gBRB8WFtijPeeU2rsWRRAGp0g-0-8d44dd9cb1ff79784345981f517a19a6)
圆周的方程写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0097.jpg?sign=1739368504-BOUGwIYg3N65AnFx2bs8rxBj104ZGNE7-0-e408506a41ae72250b026139aa771162)
利用以弧长为参数的方程,容易求得曲率k和曲率半径p:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0098.jpg?sign=1739368504-m8QppoDnJgo7R1Qh6utsyP8XhPk92SR2-0-cae484dcebedfa7dfe22d7dc242ab749)
例2 某段曲线为直线段的充分必要条件是:在这段曲线上曲率处处为0,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0099.jpg?sign=1739368504-4ji3S6NOh94VS8Yp18tA6jJ1urj8iAU0-0-f64869891a2eb26f37a6a6d1fc8593b7)
证明 如果某段曲线为直线段,那么这段曲线以弧长为参数的方程可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0100.jpg?sign=1739368504-lhVp8TQlslP3b7bR4qNq6LvPvor79sBQ-0-2ad8528e23fc4c68c8ee1ae3a5ef7a66)
这里e是长度为1的常向量.将上面的方程微分两次就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0101.jpg?sign=1739368504-7tuEsvwwBkiQ9xYskznwEsAraIKB2dVQ-0-fb0594765233347d581c0970b244de64)
因而
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0102.jpg?sign=1739368504-AmLebERfofMWcZtWEdN9Mav4EoZI2FEP-0-82b59924e37ac09ca0f0a6f00cd06b2d)
这证明了条件的必要性.
再来证明条件的充分性.假设
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0016_0103.jpg?sign=1739368504-WCcZwuEyjHJD4dJHavnzsBmakLn1HWbX-0-700abdcd8a014f7029ce2a63f6b1087b)
则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0104.jpg?sign=1739368504-mWlfXDy7zNu1FjVtom7kmfbqTqRDDMnu-0-b23623fad63dec0a1645ffbc247e8b97)
于是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0105.jpg?sign=1739368504-qEM9i3m078Cj7OdO35Y753bcv6vksTAf-0-667b3acfd84caf7d25242558c5cb7c4f)
由此又得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0106.jpg?sign=1739368504-uylAgSCaIHOSHias2CjKLLmtV3LIhKny-0-f7f6dd44cc485c531d2a56e1e35bfdc6)
这证明了条件的充分性.□
2.C弗雷奈标架,挠率
曲线上曲率等于0的点被称为平直点.我们来考查不含平直点的一段曲线.在这段曲线上
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0107.jpg?sign=1739368504-jxWdd2q5lCjktfuAUiFDVBJmxHdvzqCD-0-03c6e467fbc1661594a1661b93ff8a81)
所以可以定义
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0108.jpg?sign=1739368504-EmREEa4OeaW2tZEbqqx8HUVoDnKokrFE-0-15bbbfa2898d9e57b6da49c4c3b76ae3)
这是正交于T(s)的一个单位长向量,我们把它叫做曲线在给定点的主法线向量.利用切向量T(s)和主法线向量N(S),又可作出第三个向量
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0109.jpg?sign=1739368504-Emg7SHPfBRtowCVB95hG0evo6gb7ePiM-0-19955f1e9c8c15fe1db486d5e9cdbcd4)
因为T(s)与N(s)是互相正交的单位向量,所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0017_0110.jpg?sign=1739368504-ilXqQ9ht8NAaAqsdCT1KlwiFOVxbADB2-0-d28afda00f91a81dad6d06ec1afb15d8)
由此可知:B(s)是与T(s)和N(S)都正交的单位向量.我们把B(s)叫做曲线在给定点的副法线向量.在曲线上的给定点,由切向量T(s)与主法线向量N(s)决定的平面,叫做曲线在这点的密切平面;由切向量T(s)与副法线向量B(s)决定的平面,叫做曲线在这点的从切平面;由主法线向量N(s)与副法线向量决定的平面,叫做曲线在这点的法平面.
这样,在曲线的每一个非平直点,我们建立了一个规范正交标架{T(s),N(s),B(s)}这标架被称为弗雷奈(Frenet)标架.由这标架决定的三面形被称为基本三面形.
当点沿着曲线运动时,弗雷奈标架也随着运动(像这样的标架被称为活动标架).我们需要考查弗雷奈标架运动的状况.先证明一个引理.
引理4 设e1(t),e2(t),e3(t)是向量值函数,对每一参数值t它们都组成一个规范正交标架{e1(t),e2(t),e3(t)}.如果将
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0111.jpg?sign=1739368504-n7T6jVXH2dRs8dQK9GeKSBxiIWyd2XyW-0-b2d777af60a4de959ea844362ebe4b31)
按这标架展开
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0112.jpg?sign=1739368504-6K0uIKRPqGkTFb1c9N84mm4kuUEox9cr-0-ea3ed3e736c799afafbddd1bfceb1a1b)
那么展开的系数应是反对称的,即
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0113.jpg?sign=1739368504-B1RD9m61Amsjj9c4ikVcLLrgVTgvT2RT-0-3fccd462b2c60b2757645df4f0e503b2)
由此可知
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0114.jpg?sign=1739368504-qukIbBF3AoCP4klogitVkDrzoXiQEI97-0-515b22159b999bc3d3bdc473f8afb8cf)
证明 我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0115.jpg?sign=1739368504-CKEemOml384BciSMwYI3Eoldh12HFMa2-0-1b0fb657c35a9ccef1308dd4c7c9050e)
将这式对t求导得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0116.jpg?sign=1739368504-32cvS0ur8hKQ5lYRaZpmuC2Le5cvLTAx-0-a1ce55e88288a4293c5cf290088c046c)
这就是
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0117.jpg?sign=1739368504-wYdGSiSfeZWilO97NSXuHIaLK8Fr8WLo-0-3363653bc7ef8b0727b70a6295ab171c)
定理 对于曲线的弗雷奈标架
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0118.jpg?sign=1739368504-3WfYN2nWaIm7mLN5qZxjXb3HhaZsDFIh-0-3782164c8d1750e37b61512ceb433c6d)
我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0018_0119.jpg?sign=1739368504-ng4J9PUmUDUu75C6hYpsemiyvAN82lW5-0-7023bdfc81d1c3388b5238ae7b3c4e98)
这里k=k(s)是曲线在给定点的曲率.
证明 对于标架{T(s),N(s),B(s)}用上面的引理就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0120.jpg?sign=1739368504-SO6Mw7apquF83LUoc6FDeoINnAKHWusy-0-e18393ad51d6288a81de12e0133cb3d4)
但我们知道
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0121.jpg?sign=1739368504-Vwo9LzNPwQQNrjASNikiEbGfq2h9FbHN-0-40bc36b26f1f52a6f44c36fa61bd57db)
所以有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0122.jpg?sign=1739368504-AzvORl0jhB7U8HqWQ965a5vwlb7lRTkC-0-27b2dfd33d82fca317e05eb460fa120e)
我们记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0123.jpg?sign=1739368504-lXxvFXBKItQc8KLqm5CnaYbOjnyWYEOI-0-124e3e84abd00f27da37ccaf5ea7d7e1)
于是就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0124.jpg?sign=1739368504-2cP7cR4WarE9N8KjMP1AA8OTDzB9TOW8-0-678ba6013ff66390acab17aec91694ed)
上面定理中所给出的公式被称为弗雷奈公式.该公式中的系数τ被称为曲线在给定点的挠率.下面,我们来说明挠率τ的几何意义.
引理5 设r(t)是一个n阶连续可微的向量值函数,则有以下的泰勒展式
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0125.jpg?sign=1739368504-Eka4EtdZoUOwVsxBcDhLZMqb8qWDt515-0-9d24c3292c2452588bb8e39150ffc6eb)
其中的Rn+1(t)满足条件
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0126.jpg?sign=1739368504-UGMu88MnP9uJgfWnVSLcOjszZhQnVvL0-0-9d1141aa0a59d2437fdbac1ef658f8bf)
我们还可以把r(t)的泰勒展式写成如下形式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0019_0127.jpg?sign=1739368504-ZoAdPdtIbEqJiwrWt4VwUjR45KQDmhdy-0-d2c58a45d6db8a02012eb9b9126ce83f)
这里的小o余项表示满足条件(2.5)的向量值函数Rn+1(t).
证明 设r(t)=x(t)i+y(t)j+z(t)k.将r(t)的各分量按照带拉格朗日余项的泰勒公式展开就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0128.jpg?sign=1739368504-reXoMYBUUtlOTXdjC07USVrcDe4mdGPA-0-4a3e1d9ca119832124c505186f5fed92)
若记
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0129.jpg?sign=1739368504-48x6RozD8IMLd6kzWpVjps1rMGRypHWt-0-2203ecb758550514d866d55f3ca1ffd1)
则有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0130.jpg?sign=1739368504-dGO96CbIjqmVPGRhJS1rx7LDAkAWlM3o-0-f506e48b821f357a26418098a4102398)
利用x(n),y(n)和z(n)(t)的连续性就得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0020_0131.jpg?sign=1739368504-ogFIJbrrwkMyr8KM4wAezcyIo9Efo7fR-0-7fb8a094578a77c75b5f1d078486956e)
对于用自然参数表示的曲线r=r(s),利用上面的引理可以得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0132.jpg?sign=1739368504-AAp1gewTCMOoVOOFClS58SJHJ3b85Bf4-0-192d1827baf129c2081cac2757ce5fe0)
按照定义,切向量T(s0)与主法线向量N(s0)张成曲线在给定点的密切平面Ⅱ0.因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0133.jpg?sign=1739368504-O8oEtMXht3f9e0ooqS3rPVnVnbTgauNA-0-8c90030ed74941153405cefeb49b9d41)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0134.jpg?sign=1739368504-FenE3etnFAwxBkCqqofbCo86tIgpNHby-0-652fcbe6dbfa89193b6f79eef903b0d3)
是在密切平面Ⅱ0上的点.我们看到,在给定点邻近,曲线离密切平面Ⅱ0的距离是高于二阶的无穷小量.在这个意义上,我们说:密切平面Ⅱ0是在给定点与曲线贴合得最紧密的一张平面.在曲线上任何一点,副法线向量是该点密切平面的法线,而这样,我们了解到挠率τ的几何意义:|τ|表示副法线向量B相对于弧长的转动速率,也就是密切平面相对于弧长的转动速率.因此,τ表示了曲线挠曲的程度(偏离平面曲线的程度).
例3 设某段曲线r=r(s)上没有平直点,则这段曲线为平面曲线的充分必要条件是:在这段曲线上挠率处处为0,即τ=0.
证明 先证条件的必要性.设某段曲线r=r(s)在平面Ⅱ上,则
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0136.jpg?sign=1739368504-cya9sO5SJg6JJda3JnBrd9AUPiqFKKmZ-0-56ca81c201a4a6177d40bf0de93d10a9)
都在这平面上,于是B=T×N是常向量(垂直于平面Ⅱ的单位向量),因而
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0137.jpg?sign=1739368504-U2AHQoSfq7cupGbrK1bZBcnOGhwht8iT-0-bbb2a55f7ab5f1185ed2b5dd8a89d285)
再来证明条件的充分性.设挠率则
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0138.jpg?sign=1739368504-DFwGIx4hTZzintSqaZNiMDUpVYUcrtDj-0-b854a6e5ba372f2dc23323cdb6d56087)
因而B是一个常向量.考查函数
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0021_0139.jpg?sign=1739368504-kfr8tLEIY6jjoLoENv2PG5KtQzq9I3Ps-0-f9827fd7eb0f10616141568bb6602953)
因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0140.jpg?sign=1739368504-gsBM7uFtZVK4tPIPNhSMn7LWIF3obGu1-0-c414123d35d22cb1791e9b8116ff351a)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0141.jpg?sign=1739368504-QgIh8DLni4yVjac2le4VU4sQGVGMvebr-0-f7c24cfe972880058b283be0f8df04d0)
我们看到:曲线r=r(s)在平面
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0142.jpg?sign=1739368504-qCf4Nzdl0pbwTEIGiknWH7Ity6O7QTeb-0-fb1ceb40ec296b73d656dcf24db27ac5)
之上.□
推论对于平面曲线r=r(s),弗雷奈公式可以写成
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0143.jpg?sign=1739368504-sPC3PIV8Y4y1ACDfhk85HALvDN3xaBQl-0-3887d6ae2e711e55b52d33936203e926)
2.d曲率与挠率的计算公式
如果曲线方程以弧长作为参数:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0144.jpg?sign=1739368504-yMwRiNt5V7RIKwDPfjxj8rAMzXzKu41u-0-25b90ef54eb7c93128d06d9638d59f3c)
那么曲率与挠率的计算都比较简单.将r(s)对弧长参数s求导并利用弗雷奈公式整理求导的结果,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0145.jpg?sign=1739368504-D8teTNzPm5vgAlADX1IulfyTNDL1GeB9-0-53a4be45210e7458aafc3d0eae393bf5)
由此可得
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0146.jpg?sign=1739368504-6CrNxChnWqhCJAbtZDqfNknxV5tJZq6A-0-9462b3f7f15c3652f16f168f74f480ea)
在这里,我们用记号(u,v,w)表示向量u,v和w的混合积:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0147.jpg?sign=1739368504-Mcq85icvc6Qe6ZY7HBAvTXQXUo988GYX-0-df278f3ddaf3692faa9eb86417408fc7)
对于更一般的参数,我们有
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0022_0148.jpg?sign=1739368504-IIYDFpJdNNy11e2MPVGC2j69s2NAdkdz-0-49e5989edbefaa67ef691acb9ba10b62)
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0149.jpg?sign=1739368504-HJ8vHX97fcTt9AtoXmZa3P9JyThqZsKN-0-f49201676a1c7ed1ba8817af6ee945af)
因为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0150.jpg?sign=1739368504-RChfFufoHAKpY9BEyjldM5SSOwcjp5pI-0-c1a70b3bbc7e2f8be31ccdd381f499eb)
所以
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0151.jpg?sign=1739368504-UYPEtzDZfaOiE8sjoYqZeQac9pE6ZtGU-0-dd288ab5bd38c1a3441595cbc912b4fe)
于是,我们得到
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0152.jpg?sign=1739368504-wl82EW7zEQ9x5Vo0MeqWFRnfw3SdrE0s-0-0ed3383ce307b84cae9bc3c2d440d6c5)
由此得到一般参数曲线的曲率与挠率的计算公式:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0153.jpg?sign=1739368504-8nwARDQ76NKhkqdS0JRsae8l5Rk26PCF-0-b4c4f45932b8bae3e7153fc9a698c0ea)
2.e关于曲线运动的讨论
最后,我们利用本节得到的结果,考查质点的曲线运动.设运动质点的轨迹是曲线
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0154.jpg?sign=1739368504-MCSY6VuwsSAZnie9j0uVzKtPOP6AscKN-0-72837037b4f5be89ec221c8d82d354fd)
这里的参数t是时间.将r(t)对时间参数t求导,就可求得运动的速度与加速度.运动的速度为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0155.jpg?sign=1739368504-Pv9DHPvjgNjdjADxITWcMxXMNNJh9LhO-0-7aba0cf9699fdbf98fcc9adfbff718f9)
这里
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0023_0156.jpg?sign=1739368504-eCcQMWCbr5x48Tqusqtzydi7CEoP9DZt-0-c7d7424aae81eac8f04509e3db08bdba)
是速度的数值——路程对时间的导数.运动的加速度为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0024_0157.jpg?sign=1739368504-qdjQDCciDOi7A2jJn3WBDTGsq4xcOO3e-0-97ac229952480061d0fed2a039ed3436)
这里k是运动轨迹的曲率ρ是曲率半径.
我们看到,运动的速度沿着轨迹曲线的切线方向,其数值等于ds/dt;运动的加速度分解为两个分量一切向加速度与法向加速度.切向加速度沿运动轨迹的切线方向,其数值为
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0024_0158.jpg?sign=1739368504-WwivakAmar4QuS7SuYVErRI12KcgdgU7-0-4a08a431848c1248f7ddfc2d74774d54)
法向加速度沿运动轨迹的主法线方向,其数值与速度的平方成正比,与曲率半径成反比:
![](https://epubservercos.yuewen.com/F2E018/15279417505131406/epubprivate/OEBPS/Images/figure1_0024_0159.jpg?sign=1739368504-0P8WJ5PwV0HN0fbmmzQdVhO7EwTQ6OqP-0-70c874c8ba2f2bd377669663335f2c11)