![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第六届全国大学生数学竞赛预赛(2014年非数学类)
试题
一、填空题(本题共5个小题,每题6分,共30分)
(1)已知y1=ex和y2=xex是二阶齐次常系数线性微分方程的解,则该方程是________.
(2)设有曲面S:z=x2+2y2和平面L:2x+2y+z=0,则与L平行的S的切平面方程是________.
(3)设函数y=y(x)由方程所确定,求
.
(4)设,则
.
(5)已知,则
.
二、(12分)设n为正整数,计算.
三、(14分)设函数f(x)在[0,1]上有二阶导数,且有正常数A,B使得|f(x)|≤A,|f″(x)|≤B.证明:对任意x∈[0,1],有.
四、(14分)(1)设一球缺高为h,所在球的半径为R.证明:该球缺的体积为,球冠的面积为2πRh.
(2)设球体(x-1)2+(y-1)2+(z-1)2≤12被平面P:x+y+z=6所截的小球缺为Ω.记球缺上的球冠为Σ,方向指向球外,求第二型曲面积分.
五、(15分)设f在[a,b]上非负连续,严格单增,且存在xn∈[a,b]使得.求
.
六、(15分)设,求
.
参考答案
一、解 (1)由解的表达式可知微分方程对应的特征方程有二重根,r=1,故所求微分方程为y″-2y′+y=0.
(2)设P0(x0,y0,z0)是S上一点,则S在点P0的切平面方程为
-2x0(x-x0)-4y0(y-y0)+(z-z0)=0.
由于该切平面与平面L平行,所以相应的法向量成比例,即存在常数k≠0,使得
(-2x0,-4y0,1)=k(2,2,1).
解得x0=-1,,
,所以所求切平面方程为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0003.jpg?sign=1738986777-Hj43ryyw0D45kBJ3YHV9BlJDy1HWsG1p-0-56ae518a2e027b88f3f145eac1a344d3)
(3)显然y(0)=1,等式两端对x求导,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0004.jpg?sign=1738986777-lu30WzlLuT4BtoJIk9iYTRuPMUF2AOF9-0-f0b07544edb627ae620679801d426975)
将x=0代入可得y′=3.
(4).所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0006.jpg?sign=1738986777-JjyFGOcKmt7AiPdqi7KlCvnojz7ZvgVE-0-4bfc313cdc16a303a53fd7e95550be72)
(5)由可得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0008.jpg?sign=1738986777-K7ZKIBLlJBZ6ripfVWN1VJKs70EX5L2E-0-1debd51fc6d79bc11602cb8728d8299c)
故有,其中α→0(x→0),即有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0010.jpg?sign=1738986777-MFAyQ08W0kjKKrjpg5k7GAb35L12RGO7-0-2538eca14047e35b3b35bd20c1c75a8f)
从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0011.jpg?sign=1738986777-Viuzs0MYsTCn10gwqIPgz4mGKy4NYpYP-0-350719e52c6b17e62ac046b2657e1130)
二、解
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0012.jpg?sign=1738986777-m3Ux8odkmenQcsTf1aLV2V9HOi0BznnN-0-43035132c641a47476b0e442ea3f1d38)
令lnx=u,则有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0013.jpg?sign=1738986777-31s5CirZ4PjBeUl5qJXutZg1gCPi4odV-0-4279d62d4785f4c648103bcc0b76a87b)
三、证明 由泰勒公式,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0014.jpg?sign=1738986777-xvYtcFIzUG8oC64F93A88uEsXCVsK5z7-0-2de1de42c70f8e6858bd0c9824018213)
上面两式相减,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0015.jpg?sign=1738986777-um3RJxbpRkVducumeuFakQFT4NGw2AKS-0-b14b36d8f606b5472ea563c6576fc422)
由|f(x)|≤A,|f″(x)|≤B,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0016.jpg?sign=1738986777-tHrf7t52QOCd93QYx8VjAg8uVZ0bWjKs-0-82862b2ee8fb7d83f078f7196b2d3a3a)
又x2+(1-x)2在[0,1]上的最大值为1,所以有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0036_0017.jpg?sign=1738986777-AlJvYrBtUc00k4XXYckSkPrPTSjIG30r-0-454175e6848092edf3cd0f357fa915f7)
四、(1)证明 设球缺所在球表面的方程为x2+y2+z2=R2,球缺的中心线为z轴,且设球缺所在的圆锥顶角为2α.
记球缺的区域为Ω,则其体积为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0001.jpg?sign=1738986777-esHkQECxBSOwXHCG9MANgpdDgMdXFqL9-0-ac7f89f5d02a667ad11151d6f55cad97)
由于球面的面积元素为dS=R2sinθdθ,所以球冠的面积为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0002.jpg?sign=1738986777-6q0KIDeSDSCEOHnjELA94ZIbll26Vtg6-0-1ee25bc430600ef9b16ef252750ab961)
(2)解 记球缺的底面圆为P1,方向指向球缺外,且记
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0003.jpg?sign=1738986777-Ht8FtLVZJgz8y8c7YDNMIqeoGlrqCgoW-0-24fb40c5246a3059df17489517f202a4)
由高斯公式得.其中V(Ω)为Ω的体积.
由于平面P的正向单位法向量为(1,1,1),故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0006.jpg?sign=1738986777-l9PJjYNQDwfzXX3kg7UXSy7abtLt1AS0-0-2d704099ae2f079aca33eab71cde8fc6)
其中σ(P1)为P1的面积,故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0007.jpg?sign=1738986777-WUmVMhmKU2DliG5tfmgAuiti6J4EU88C-0-eccfced321226c654bdb30d5bf8888f5)
由于球缺底面圆心为Q(2,2,2),而球缺的顶点为D(3,3,3),故球缺的高度为,再由(1)所证并代入
,
,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0011.jpg?sign=1738986777-bsNGVK4jIMweXL7tO5WbVePIhMDveI5y-0-c063d6dbbf6c08a8ed357e5d28fd7988)
五、解 考虑特殊情形:a=0,b=1.下面证明.
首先,xn∈[0,1].即xn≤1,只要证明∀ε>0(<1),∃N,当n>N时xn>1-ε.由f在[0,1]上严格单增,就是要证明
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0013.jpg?sign=1738986777-vZJECbrMUhmhLCm9ALmnZPM9eWSPOsXX-0-ee2200c03db04af8dbbcf233ea69d480)
由于∀c∈(0,1),有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0014.jpg?sign=1738986777-VPYAY9jgHmB3yTEpsFik23jT0h5HIRYe-0-bbbfb04786d864dc10eed1378be61f32)
现取,则f(1-ε)<f(c),即
,于是有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0017.jpg?sign=1738986777-IFzbjE2H7TbVJKUncNCZ4gV1KpUsfIY6-0-8b23f3612123d0619246585111d6d40f)
所以∃N,∀n>N时有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0018.jpg?sign=1738986777-KQpqbf7dknCoaCJ7UJPEEFUJZ4xV0klj-0-2fb5d9038dab2031d92c809fa5bed32c)
即
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0019.jpg?sign=1738986777-b88okqgkdiSPVw99Re0B7AdsBfpvWvPG-0-c4ea7ce4a5d6bae9add0b10e27fd3bf7)
从而1-ε<xn,由ε的任意性得.
再考虑一般情形,令F(t)=f(a+t(b-a)),由f在[a,b]上非负连续,严格单增,知F在[0,1]上非负连续,严格单增.从而∃tn∈[0,1],使得,且
,即
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0037_0023.jpg?sign=1738986777-ZChoIgWlId93nFDwLl7Xo2DuwzHHEa6H-0-10fc69a9511801177187869d97ab6a45)
记xn=a+tn(b-a),则有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0001.jpg?sign=1738986777-lJO6Oz7dwLKQxQY7VnDMTvLiv9AlO1WZ-0-8f6e3eedf451b0f3b9b58707f443cf88)
六、解 令,因为
,所以有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0004.jpg?sign=1738986777-yOYFjTTUzUogk766TIkmM8KdRmsdTf6r-0-c0360d4b816f65ccb0efd6fce55222ba)
记,则
.令
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0007.jpg?sign=1738986777-PiPKpmnCTEmmT8HzAxVyf0Q7TYkKz2Hz-0-26bef6daf93d79c702c208e4c2cc1832)
由拉格朗日中值定理,∃ξi∈(xi-1,xi)使得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0008.jpg?sign=1738986777-dbPc5hrNvykGQnarv1srMM9YL7Bulgqw-0-fe1faa5d05c6c5ad64e2f82c15186208)
记mi,Mi分别是f′(x)在[xi-1,xi]上的最小值和最大值,则mi≤f′(ξi)≤Mi,故积分
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0009.jpg?sign=1738986777-R5PZg9AHgVRim3W5fambQnMZuHts5BAH-0-acdf0be3e4cdc7b509697d494c8cd6c1)
之间,所以∃ηi∈(xi-1,xi)使得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0010.jpg?sign=1738986777-L8y4lbyxWbbL4CTFynrhYChP3cfZZgmW-0-f1ceb958820a721d8ed0170db2da1dde)
于是,有.从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0038_0012.jpg?sign=1738986777-nQrDheeEW7DvaDMb9AtIIKw7I2SBydIi-0-64bcec7950c804dad5d237cae66ca76c)