![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第八届全国大学生数学竞赛预赛(2016年非数学类)
试题
一、填空题(本题共5个小题,每题6分,共30分)
(1)若f(x)在点x=a处可导,且f(a)≠0,则.
(2)若f(1)=0,f′(1)存在,求极限.
(3)若f(x)有连续导数,且f(1)=2,记z=f(exy2),若,求f(x)在x>0的表达式.
(4)设f(x)=exsin2x,求f(4)(0).
(5)求曲面平行于平面2x+2y-z=0的切平面方程.
二、(14分)设f(x)在[0,1]上可导,f(0)=0,且当x∈(0,1)时,0<f′(x)<1.试证:当a∈(0,1)时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0043_0005.jpg?sign=1739377876-qFibhQPJCVk68jWrktccfkhdRYSgDK8i-0-e193516c584a8fc8cb2c3c2c27555f55)
三、(14分)某物体所在的空间区域为
Ω:x2+y2+2z2≤x+y+2z.
密度函数为x2+y2+z2,求质量
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0043_0006.jpg?sign=1739377876-X4NR2u0MqEUgm5aXTNIsr5itP7edZERD-0-440671f14914c3bd97706305584db259)
四、(14分)设函数f(x)在闭区间[0,1]上具有连续导数,f(0)=0,f(1)=1,证明:
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0043_0007.jpg?sign=1739377876-Xs46jvxFDPcY9qeqiLwaLNs5T76zOV7X-0-d81766035a0629363d9ba102fc6a04c3)
五、(14分)设函数f(x)在区间[0,1]上连续,且.证明:在(0,1)内存在不同的两点x1,x2,使得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0043_0009.jpg?sign=1739377876-kuqt9GBPXObCM3TElsykewougvVQMVYZ-0-dfb1b3a44cf27228d3a6b7311b8468b9)
六、(14分)设f(x)在(-∞,+∞)上可导,且
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0043_0010.jpg?sign=1739377876-nhuhNvkhuRMe2jr2WzdHbuTUYGq9TeFn-0-66b7df069bd1f1f26f02958d969d62d7)
用傅里叶级数理论证明f(x)为常数.
参考答案
一、解
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0044_0001.jpg?sign=1739377876-ecbECa0h898By4NkeQUXlcQsC0bciPQQ-0-bff5342a9b6ddcbf77194e6bffd69930)
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0044_0002.jpg?sign=1739377876-593vSeb7AArASC3M2xbs6aPaGWlXfsyJ-0-270be5e2472ddf5e6699fa5d0e587002)
(3)由题设,得.令exy2=u,则当u>0时,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0044_0004.jpg?sign=1739377876-0r7UF9Zb4wxJCbZxuIZ411QInS54B6Yb-0-77a4d1606f54ede8fd945d279e23dbb8)
积分得lnf(u)=lnu+C1,即f(u)=Cu.
又由初值条件得f(u)=2u.所以,当x>0时,f(x)=2x.
(4)将ex和sin2x展开为带有佩亚诺型余项的麦克劳林公式,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0044_0005.jpg?sign=1739377876-9eCz5KZUXjy0zZwxiKK2Ns04AgxlPAP6-0-c61c3fc268dba66543745325c21229fd)
所以有,即f(4)(0)=-24.
(5)曲面在(x0,y0,z0)的切平面的法向量为(x0,2y0,-1).又切平面与已知平面平行,从而两平面的法向量平行,所以有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0044_0007.jpg?sign=1739377876-DcumhYY5TAclEC2oXww0Jxh2Vml70A4N-0-4d4709c4b13d7b756e2cf709217cf3da)
从而x0=2,y0=1,得z0=3,所以切平面方程为
2(x-2)+2(y-1)-(z-3)=0,即2x+2y-z=3.
二、证明 设,则F(0)=0,下证F′(x)>0.
再设,则F′(x)=f(x)g(x),由于f′(x)>0,f(0)=0,故f(x)>0.从而只要证明g(x)>0(x>0).而g(0)=0.因此只要证明g′(x)>0(0<x<a).而
g′(x)=2f(x)[1-f′(x)]>0.
所以g(x)>0,F′(x)>0,F(x)单调增加,F(a)>F(0),即
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0045_0001.jpg?sign=1739377876-Ej8RdSgAN9lhRIX8LwpZMHkNyR4UhFZL-0-7122de60192fe572cb56244ce78c3023)
三、解 由于
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0045_0002.jpg?sign=1739377876-tiUBxAi5QSc3c1Qg4hZtdspgZTobj9FF-0-0df2cd6b333e1d07aff656c66c92ae87)
是一个各轴长分别为1,1,的椭球,它的体积为
.
做变换,将区域变成单位球Ω′:u2+v2+w2≤1,而
,所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0045_0008.jpg?sign=1739377876-GezIwchRQZIW54dNtne4UTBCp79kwOGG-0-b3c0b5e3fc9ea95a6035c98223fa8f55)
而 .所以
.
四、证明 将区间[0,1]分成n等份,设分点为,则
.且
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0045_0013.jpg?sign=1739377876-MxvQyLRweyDxnevqcxEv9cgkrq9suv8a-0-2d3d6f353a4b98690ec232afbcce19a9)
五、证明 设,则F(0)=0,F(1)=1.由介值定理,存在ξ∈(0,1),使得
.在区间[0,ξ],[ξ,1]上分别应用拉格朗日中值定理,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0045_0016.jpg?sign=1739377876-uko6NAEZkj7LG0yLUrXBlZPRMLtZi8Rw-0-e23bab27a9b5f63fbf998ffa90ccf309)
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0001.jpg?sign=1739377876-x4FuAxZmPUkmWJoXOI1gAOYXhxAzmofx-0-3cd7b3aa936630b101e0640d3c973e24)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0002.jpg?sign=1739377876-E0UZJQ39b9DgXa76k6PtV0lofXq6VGTp-0-0ac2e912b9f9a33ea6acd8fb96faf274)
六、证明 由可知,f是以2,
为周期的周期函数,所以,它的傅里叶系数为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0005.jpg?sign=1739377876-6sV4VRVCWJk40C127lfOlTZdMcdMYOQP-0-3e6a72353eef6f3a11d34dcfca079917)
由于,所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0007.jpg?sign=1739377876-9blkZnXEYkschHisi1tWWH6IWfXHvtAt-0-1210c9e2181e5eaf72901e98e36d2f70)
故有;同理可得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0009.jpg?sign=1739377876-FOQQNP66UVW3TASkttVJpo1q8IQZsN3W-0-f13b8481d30ee152527dcd3a6bcad522)
联立,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0010.jpg?sign=1739377876-BmVwXXmFknIgh3QLO03auDv1LjSO6V1u-0-08b84e095d8bfb98ba1e78fc9932aa96)
解得an=bn=0(n=1,2,…).
而f(x)可导,其傅里叶级数处处收敛于f(x),所以有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0046_0011.jpg?sign=1739377876-5nZGl3ZAfDLWI07CukUbPfrUZlUsb0HU-0-cd320d14928454703854646372d7674e)
其中为常数.