![范里安《微观经济学(高级教程)》(第3版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】](https://wfqqreader-1252317822.image.myqcloud.com/cover/768/27032768/b_27032768.jpg)
第4章 成本最小化
1.严格证明利润最大化意味着成本最小化。
Prove rigorously that profit maximization implies cost minimization.
证明:令为价格
下利润最大化的一个投入向量。这意味着,对于所有可允许的
,
必须满足
。
假设对于产出,
没有使成本最小化,即存在一个向量
满足
与w
,因而在
下所取得的利润必须大于在
下所取得的利润:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1330.png?sign=1739109548-BXA1ZOi5Te8CcytQ4KX5OEXFEtrDHYqv-0-ec4d4aceedcaa7fe33e95f3615c034de)
这与使利润最大化的假设相矛盾,故假设不成立,因此利润最大化意味着成本最小化。
2.使用库恩-塔克定理得出即使最优解涉及边界解时也是正确的成本最小化条件。
Use the Kuhn-Tucker theorem to derive conditions for cost minimization that are valid even if the optimal solution involves a boundary solution.
答:互补—松弛条件为:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1331.png?sign=1739109548-KIvwlgmScCXfhmdgeXT33gwt8CJnMeWh-0-3cc61ea851c68d6b6c382d70a8ebb68e)
当和
成立时,上式就隐含着:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1334.png?sign=1739109548-hlVqMzC7DrdmKYDfGqZdlgDsAeBDCqOe-0-765a0ed0427d1ed0117f2e52715ff1e3)
这个不等式意味着用代替
时,可以降低成本,然而由于企业已经用完了它可以得到的
的所有数量,所以继续降低成本是不可能的。
3.一个厂商有两个车间,它们各自的成本函数为和
。该厂商的成本函数是什么?
A firm has two plants with cost functions and
.What is the cost function for the firm?
解:厂商的成本最小化问题为:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1339.png?sign=1739109548-ajggC53AXIMoA3DYDdtC07uyaF4NFdXR-0-21e6521f3386ad38d75a0d2d0d3208d9)
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1340.png?sign=1739109548-r66dy4EhP9LuBvdHkvtWwv87vzgGPN27-0-93ccb85aa5cad42565ee7cd020265696)
从约束条件中解出的表达式,然后代入目标函数式中得到:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1342.png?sign=1739109548-c3AkHehynJWz170tiJEuPQ9dr7l7NL9I-0-f92daf68db120d7bcc2100404492fa30)
下面分情况讨论:
(1)如果,那么
的最优值为1,此时的成本函数为
。
(2)如果,那么
的最优值为
,此时的成本函数为
。
4.一个厂商有两个车间。一个车间根据生产函数来生产产出,另一个厂车间的生产函数是
。该技术的成本函数是什么?
A firm has two plants. One plant produces output according to the production function .The other plant has a production function
.What is the cost function for this technology?
答:考虑柯布-道格拉斯技术的成本函数的成本最小化问题(以第一个车间的生产函数为例):
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1352.png?sign=1739109548-OPlhsK4mhx521k03wKmpJRJSMhSBTbWs-0-48fe9fe7fb9bbdc94cb49d501553d049)
将上述问题转化为无约束问题:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1353.png?sign=1739109548-uzSOjQaLd718gVPlLEsO24lGPkglZJVX-0-da364ac55604e959052fe097107c5c40)
一阶条件为:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1354.png?sign=1739109548-6Xcm7UFlxFO5FXxz4TNjCCWCyiWp2gR9-0-4581f4fbb58cb35b000b6450422ea1ff)
得到要素需求函数:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1355.png?sign=1739109548-0VaH86T3LmUFvBGNDba15cZ4verfN6yr-0-255124d6e7deda16df634cc53fdef505)
将要素需求函数代入到目标函数中:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1356.png?sign=1739109548-vwvCyCYPWI28ea1RZqxkUO0UGv7gS0jy-0-b435fedc047c05208ef2880b44b58e84)
其中,。
因此第一个车间的成本函数为:,则第二个车间的成本函数为:
,其中,
,
。
如果厂商采用成本最低的生产方法进行生产,则该厂商的生产成本函数为:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1361.png?sign=1739109548-FTImmobxRnkBe8V0YGG9IiukXis0RJTn-0-1303d6581b8ca88bc97c96a050c188dc)
即让平均成本低的工厂生产所有的产量。
5.假定厂商有两种可能的方式来生产产出。方式a:使用单位的物品1和
单位的物品2来生产1单位的产出。方式b:使用
单位的物品1和
单位的物品2来生产1单位的产出。要素只能以这些固定比例使用。如果要素价格是
,对这两种要素的需求是什么?该技术的成本函数是什么?对什么样的要素价格,成本函数是不可微的?
Suppose that the firm has two possible activities to produce output. Activity a uses units of good 1 and
units of good 2 to produce 1 unit of output. Activity b uses
units of good 1 and
units of good 2 to produce 1 unit of output. Factors can only be used in these fixed proportions. If the factor prices are
, what are the demands for the two factors? What is the cost function for this technology? For what factor prices is the cost function not differentiable?
答:生产函数为:
方式a:
方式b:
用方式a生产1单位产品的成本是,用方式b生产1单位产品的成本是
。这样如果厂商计划生产
单位的产量,那么它会使用成本较低的那种生产方式生产全部产品,从而厂商的成本函数为:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1369.png?sign=1739109548-ruJcdL0s7NbWwiNN1V8RfheVs0YTBrxB-0-17280cfc60338f52b63e279a23e07607)
要素1的需求函数由下式给出:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1370.png?sign=1739109548-Cu6OdcWEFwsuQj2FTAgFp390eT1So3by-0-f9fa076ab4e8fd00b04a2f3ef24d9073)
要素2的需求函数由下式给出:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1371.png?sign=1739109548-kfnS1n47JZEdIT9XmCCywuI7EkW1PJWv-0-d3bef1d4dbddaca7d2752478e5a9791e)
当时,成本函数将是不可微的。
6.一个厂商有两个车间,成本函数分别是和
。生产
的产出,它的成本是多少?
A firm has two plants with cost functions and
. What is its cost of producing an output y?
解:企业的成本最小化问题为:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1375.png?sign=1739109548-YEgspe0fMUItGD0WQ145WdXJIIvUk3Ei-0-2c33972c9b664d7479b7ae11505e97dd)
这个问题的拉格朗日函数为:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1376.png?sign=1739109548-wm659t04X12sFqjMJe1hsuFQ0e9w9oIe-0-d43890705f4c1e87dc9d7a377b3b598e)
这里、
、
都是非负的。库恩-塔克条件为:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1380.png?sign=1739109548-oDuZBBofD4wKVzvqjoqOIpx3QZfMxd1P-0-b5b9e1ca6bb353a1b40220f95efe216d)
下面分情况讨论:
①最优解为内部解的情况:此时、
都等于零,这就意味着:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1381.png?sign=1739109548-5LApZMdyQOCGwFjQPf597NMarK41ay3F-0-1dba0a28a96ac788e2eee99095c0d6a3)
大于零又意味着
,从而解得:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1383.png?sign=1739109548-S0wbrifV5iSMeN820mi9oCLceEOcWvP4-0-ce89db5dc90eb0f6e8230bcd060277ae)
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1384.png?sign=1739109548-6PuXI6MnZuBPqmWDBCdK6L3rGgTdSkJr-0-006f9c72ae99e9736cdc081224fb7cba)
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1385.png?sign=1739109548-9TeOpYuMmYeBnH3A9KLMZ4V11BHMtVTQ-0-f50dca8f89a5cfe01e00daa938794b20)
②最优解为角解的情况:此时若,那么:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1387.png?sign=1739109548-8UBHMvIWHHOtgmbxtvUpwD6XhLm1Psvd-0-4db48379401346c5e12b74b2e7bce0ab)
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1388.png?sign=1739109548-HUyPS4u1EZ4ykSxC63FPFYcoIKaf6Cpe-0-3d380e03166ab688052810525aab7acd)
可见角解优于内部解。若时,
,故这种情况舍去。
综上可知,厂商的成本函数为:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1388.png?sign=1739109548-HUyPS4u1EZ4ykSxC63FPFYcoIKaf6Cpe-0-3d380e03166ab688052810525aab7acd)
7.表4-1显示了对一个厂商的要素需求、
,要素价格
、
和产出
的两组观测值。表中所描述的行为与成本最小化行为一致吗?
Table 4-1 shows two observations on factor demand ,
, factor prices,
,
, and output,
for a firm. Is the behavior depicted in this table consistent with cost-minimizing behavior?
表4-1 要素的价格,投入数量和产出数量的关系
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1391.jpg?sign=1739109548-YMKa21fIIbXNjylN2mRRGCMDRzSPqFtH-0-40774322037e1538d29069c2c5f64bd0)
答:表中所描述的行为与成本最小化行为不一致。理由如下:成本最小化行为意味着成本最小化弱公理成立,即:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1392.png?sign=1739109548-qh8GkRKJOzAvWz52cS9uZ7sfrRIdwVGu-0-43fe455cb85141b00822cedf99ec191c)
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1393.png?sign=1739109548-W4WbLDxpuzkaT4V5M3x0cykNksQZF6rD-0-4ad3048286b185bfd72a520ab52001b0)
现在生产100单位产出花费的成本为:,但在同一价格下,生产110单位的产出花费的成本仅为:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1395.png?sign=1739109548-70lt7btgP2tzxLW7mkFRaJBi2T69Bi1P-0-e681c7d39d7b69e5203e31fbf74bd24b)
这就和成本最小化弱公理相矛盾.
8.一个厂商有生产函数。如果在
时,生产的最小成本等于4,
等于什么?
A firm has a production function .If the minimum cost of production at
is equal to 4, what is
equal to?
解:企业的成本最小化问题:
(1)
将代入目标函数,得出无约束最小化问题:
(2)
其一阶条件是:
(3)
得到:
(4)
同理有:
(5)
将(4)式和(5)式代入目标函数中,得到成本函数为: ,根据已知条件最小成本为4,即:
,解得:
![](https://epubservercos.yuewen.com/DB33CA/15436380805519906/epubprivate/OEBPS/Images/image1405.png?sign=1739109548-BruDpMwfd1S3idX6IwuJGkDYhPXUW9S0-0-e8fd1e411c8622118f514d65a5db1d41)