![信息融合中估计算法的性能评估](https://wfqqreader-1252317822.image.myqcloud.com/cover/245/27741245/b_27741245.jpg)
3.2 经典UCM方法
3.2.1 问题描述
对于多雷达/声呐场景,在二维极坐标系下,量测信息包括目标的径向距离和方位角。在传感器坐标系下的径向距离和方位角分别为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0033_0001.jpg?sign=1739258169-FzgVTbYNeK7P9dm4ev7uOINmnHXoacw2-0-66fde43569ba93fbf87126b4fdb7b24e)
式中,r和β 分别为目标真实的径向距离和方位角;上标“l”代表第l个传感器(l=i, j);和
分别为第l个传感器径向距离和方位角的量测噪声,且彼此独立,其均值均为零,方差分别为
和
。则协方差矩阵为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0034_0005.jpg?sign=1739258169-UrT9CszM58UmX2D7kwjiMwFrOLV4vtoJ-0-8ce90a64542a8046c2e392abba16d90b)
假设x、y分别为目标在x、y方向上的真实位置信息,则有
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0034_0006.jpg?sign=1739258169-rV34rhz45PW8YIxF54Fiz9azadAZRlF5-0-cae716574660975cb50a4241898ac590)
在笛卡儿坐标系下,建立量测方程:
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0034_0007.jpg?sign=1739258169-aknXCCFxkAPf3CWBFjKe1Nm4R7DreUxf-0-043a240b6a82602a3d26af7e9ad245f8)
由此可利用传感器坐标转换过来的量测值,估计目标的真实位置。
3.2.2 二维情况
对于二维情况,通过极坐标到笛卡儿坐标的转换,第l部雷达的量测转换方法是
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0034_0008.jpg?sign=1739258169-HeiT6XGjO1zPJU6Rbi6odKb1vfUCOKAy-0-959604e11ec8013c622d730001483c22)
若方位角噪声的概率密度函数关于y轴对称,则对式(3.2-5)取期望得到
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0034_0010.jpg?sign=1739258169-rtilH5NaK5lrQUzjGhp1Kob95bkiRbeN-0-33a59cac9f513935685c17bb4dd591be)
式中,
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0034_0011.jpg?sign=1739258169-v8xhZ9saZYfG2hd4MoehcqHQpaMQiT2J-0-f4b4d8cf827f33e094ae187f155de621)
称为偏差补偿因子。可以看出,当λβ≠1时,式(3.2-6)给出的量测转换是有偏的。假定λβ≠0(至少对于单峰的或在[-a, a](a<π)上均匀分布的概率密度函数,这一条件成立),可以通过下式得到一种无偏量测转换方法:
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0035_0001.jpg?sign=1739258169-ZV2fF6llu8cm57Qpm4v1mt2H2kwx10UJ-0-e204dd16b6cdf3efe9e15cd95b7bd033)
由式(3.2-8)可以看出,量测转换偏差的本质是乘性的,并且依赖于方位角量测噪声余弦的统计特性。下面以雷达的量测值为条件求解式(3.2-8)的无偏量测转换所对应的协方差矩阵[91]。
量测模型可以重写为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0035_0002.jpg?sign=1739258169-EdoFJAxlceX5j3hIkDlHNSI8365ry7Bw-0-2be28d86ac9ed488a92771872c15be7b)
转换后的量测误差为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0035_0003.jpg?sign=1739258169-oQsrDNkUOJ9h7zQDYx0xUqSlDRuhWlDe-0-ce6c91f2364a8da19793809d16900d6c)
相应的量测噪声协方差短阵为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0035_0004.jpg?sign=1739258169-T0UUFmyOPwGM14mAV2j19pMY8vLyAkJq-0-7151d240670ff6aff888911f4d0dbd82)
对此,经典UCM方法给出的计算公式如下:
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0035_0005.jpg?sign=1739258169-18f3aFEVYj3C0bRmlSW0JnfeXeyc342O-0-e0b18b826acdc6f3ac9a16532fe2cea5)
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0036_0001.jpg?sign=1739258169-3DPSRb3DF3Rwzor53TIw37LSuUn9FC9I-0-c724282e9e06688c5df9908f4b62b60d)
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0036_0002.jpg?sign=1739258169-DQsufWr7iHe0ZhsM2l180BgLZCfNbpYT-0-d133177e978e2916a4406a284586fa54)
式中,。
经典UCM方法因为只考虑单部雷达的量测转换后的协方差,忽略了雷达之间的互协方差,因此仅适用于单部雷达的场景。
3.2.3 三维情况
在三维球坐标系下,量测的径向距离、方位角和俯仰角分别为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0036_0004.jpg?sign=1739258169-KmP0OENEncv9spC2M00lqdHCcVNeJIdD-0-a04d151f9c65d33f96675fc98adba244)
式中,r、β、ε分别为目标真实的径向距离、方位角和俯仰角;、
和
分别为第l个传感器的量测噪声(l=i, j),且彼此独立,其均值均为零,方差分别为
、
和
。
三维情况下的无偏转换为[91]
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0037_0001.jpg?sign=1739258169-2fKDbXhDxpSPdLCYbSQ4iyH2BUwiIqRh-0-f830f165659147610c8162205b8ad116)
其中,
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0037_0002.jpg?sign=1739258169-NNuqHbZUzTJUvsqpWWLjp984awTVrhe1-0-63b2509ecdc59a4ec30fda23f6ffe5cb)
将式(3.2-16)重写为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0037_0003.jpg?sign=1739258169-OZk229wBCxZvq1If5QN3XZgiO4gAs5wl-0-3f0695693a926aceaad9d25f04b035d9)
其中,
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0037_0004.jpg?sign=1739258169-BK70nBq77jnKr0mfdOcVDbbXtwlHAnc2-0-120c1c47f501bfb17a19dc57492cbba9)
转换后的量测误差为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0037_0005.jpg?sign=1739258169-ItFHgGmgKtZ3DWAVeSE9reyAlDosBSK2-0-41e433a0339a3a47d7c5e26963e1a394)
相应的量测噪声协方差矩阵为
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0037_0006.jpg?sign=1739258169-99V0ZNTOy4Jf6ha984b5zwjM2zOA1PXz-0-9eb0f046af6c80b8c412602123090ce6)
对此,经典UCM方法给出的计算公式如下:
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0038_0001.jpg?sign=1739258169-yK3hjTXLZDyumLC1rAEG2O4YYQj1TEWj-0-dcd37b52f163c3c38e845f3c305eb5c2)
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0038_0002.jpg?sign=1739258169-QzgjjlBvi5FnHNjGeyMcQ1qgPen8Mz2V-0-dd7f7caf9c530d8c97237921ee6cc581)
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0038_0003.jpg?sign=1739258169-diVSD9j2giJwhTre3MFStfJnp8UP4yU6-0-3ae35347f2dcf742e197dfad02e16c38)
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0039_0001.jpg?sign=1739258169-rco3Tw9kL0q73SUKz9shcilifQ1BzOW3-0-5c6997870471442d8d406c8105dd958e)
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0039_0002.jpg?sign=1739258169-WQCfK1Ricp9ZtGpNMKJFzRdH68sX1nya-0-b6cee572d3fc50eb72ef6727b241e87b)
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0040_0001.jpg?sign=1739258169-LetbZ6HS96MNbTtaerUy8q7YDwoaYfkc-0-09973503d55ebd86c31d8684ff82197a)
其中,
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0040_0002.jpg?sign=1739258169-xcVdKeNbvsgMtsFy3GbhWl4Y168ZeVWS-0-fd498339f16af3624a99603418950c28)
3.2.4 偏差补偿因子的计算
偏差补偿因子λβ、λε、和
可由方位角量测噪声
和俯仰角量测噪声
的概率密度函数来确定。当
、
都服从高斯分布时,有
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0040_0009.jpg?sign=1739258169-wcPKnL9aMIEg93d7NPeOEGuthcDrKj9J-0-f7d519d35b1a900d3ec73c4aeffa2c00)
当、
都服从[-a, a]上的均匀分布时,有
![](https://epubservercos.yuewen.com/F26648/15937388304514006/epubprivate/OEBPS/Images/figure_0040_0012.jpg?sign=1739258169-DbiRwevYXsrVICtmpd8WwFempijoCxJo-0-8afb09b92444ce735396acb57bffc96f)