![医用高等数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/549/31729549/b_31729549.jpg)
2.2 导数的运算
根据导数的定义,求函数y=f(x)的导数f′(x)可分为三步:
(1)求增量Δy=f(x+Δx)-f(x).
(2)算比值Δy与自变量的增量Δx的比:
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00032006.jpg?sign=1739314127-99cHSjVBpip304VT2TK9Rrh3CBw9WZlF-0-d904dafc8096a1a469882a062d038f15)
这个比值称为函数的平均变化率,又称差商.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00032007.jpg?sign=1739314127-croPC4RqKArBxapHDmJ3vRPQa0oJUSso-0-4b09b55245b96e24c6cd4242570230e3)
若此极限存在,则此极限值就是函数f(x)的导数f′(x).
下面我们根据导数的定义,求几个基本初等函数的导数.
2.2.1 一些基本初等函数的导数
1.常量的导数
设函数y=c,因对任何x,有y≡c,显然Δy=0,所以,即
(c)′=0
2.幂函数的导数
设函数y=xn(n为正整数),给x以增量Δx,由二项式展开定理有:
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033001.jpg?sign=1739314127-X4GOlAsXYVRltiD6PlV8S17QiexVRUN8-0-56a6ce23b3576fa85d8a23e0950ed858)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033002.jpg?sign=1739314127-GC2KCJIOzwPS8C22WUn4kD1O4jEBTIaT-0-fc211aa914d06dfaf0173b38b2504b89)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033011.jpg?sign=1739314127-ROUKZb6fKhKnDmfAPUZRwEEhQEfD0QPh-0-46d7e5a006fb1fdde17eeb46bc2b7919)
即 (xn)′=nxn-1
当n=1时,上式为 x′=1
即自变量对其自身的导数等于1.
更一般地,对于幂函数y=xa(a为任意实数),有
(xa)′=axa-1
这就是幂函数的导数公式,此公式的证明将在后面讨论.
3.对数函数的导数
设函数y=logax(a>0且a≠1).
给自变量x以增量Δx,则
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033003.jpg?sign=1739314127-yEeLOgR1QUDQIaP0oXIE7m0NPi7HEKEc-0-c106d09af440e2250001715dc7860b1d)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033004.jpg?sign=1739314127-kfmNhq6w2dSKsSwIjNVNlLBJp9KdKKKO-0-4d55b014f48767a92189b203479b090b)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033005.jpg?sign=1739314127-pQHgSygFA9zEPUMPs9rlGLZCvmmxmw9D-0-8287f21f345eee8dce8685a0252d7cf1)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033006.jpg?sign=1739314127-EweOWS8NwoDh7Ld039qnbDOj4sbc9cjj-0-20363c7744c17c40d48faaa8c915440a)
特别对于a=e,则有
4.正弦函数和余弦函数的导数
设函数y=sin x,给自变量x以增量Δx,则Δy=sin(x+Δx)-sin x,由三角函数的和差化积公式,有
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033008.jpg?sign=1739314127-jBwCABP0LkxC2U0FHrv82dmXzyWKkVwp-0-f2bbd4621436714ba75a29a9ad5f648a)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033009.jpg?sign=1739314127-HA5UxBaM7sGhhWIzIBvrgjkxDfSdu9B8-0-8fa8ccb60a70870176bb1fe001dbaede)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00033010.jpg?sign=1739314127-ijzUgxf2L2eujB9PQlnf69d47MP0eFtP-0-811d0eb270c1dffa5eee139ee6231e01)
即 (sin x)′=cos x
同理可证 (cos x)′=-sin x
2.2.2 函数四则运算的求导法则
设函数u=u(x),v=v(x)在x点处可导,即u′=u′(x)及v′=v′(x).
法则1 两个函数的代数和的导数
(u±v)′=u′±v′
证明 设y=u±v.给自变量x以增量Δx,函数y,u,v的增量依次为Δy,Δu,Δv有
Δu=u(x+Δx)-u(x)Δv=v(x+Δx)-v(x)
Δy=[u(x+Δx)±v(x+Δx)]-[u(x)±v(x)]
=[u(x+Δx)-u(x)]±[v(x+Δx)-v(x)]=Δu±Δv
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034002.jpg?sign=1739314127-c2T065AkZ6rxEOiFFZ1ZYB1ZVQyQ3BK0-0-1f9c3e711526288ce23a163aebb7c830)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034003.jpg?sign=1739314127-ONKqji1Z7p9V7tre4Yfd6SubwIUxQZ2p-0-9c082c83ad3ec7230bc36c76762e828f)
即 (u±v)′=u′±v′
此法则可推广到有限个函数代数和的导数情形,例如(u+v-w)′=u′+v′-w′.
例1 已知函数,求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034005.jpg?sign=1739314127-NHiU68KPgbqV93MIFYhy5v6ginJmUCiJ-0-478912d4d9f63d65daed213f2d02bf64)
法则2 两个函数乘积的导数
(u·v)′=u′v+uv′
证明 设函数y=uv,类同法则1有
Δy=u(x+Δx)v(x+Δx)-u(x)v(x)
=u(x+Δx)v(x+Δx)-u(x+Δx)v(x)+u(x+Δx)v(x)-u(x)v(x)
=u(x+Δx)[v(x+Δx)-v(x)]+v(x)[u(x+Δx)-u(x)]
=u(x+Δx)Δv+v(x)Δu
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034006.jpg?sign=1739314127-fmo5aOh7uVnvlxJ092L6145DKMkjIPvo-0-52e344eef79f01809f6edea1a261ab05)
已知函数u(x),v(x)在x点处可导,则u(x)在x点处连续,故有
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034007.jpg?sign=1739314127-SB9dBTZBW3AGkCLErOUN3pJlI33OlHJk-0-299b8e5feddfcb0f0c1be781b39baf2f)
即 (uv)′=u′v+uv′
推论1 (cu)′=cu′
推论2 (uvw)′=u′vw+uv′w+uvw′
乘积的法则也可推广到任意有限个函数之积的情形.
例2 已知y=ln x(sin x+cos x),求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00034008.jpg?sign=1739314127-0F4EnS44t5HBwiX7edOF9LDtddQjvw8G-0-20be606f7506c720bc3bc900dc5c33e2)
法则3 两个函数商的导数
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035001.jpg?sign=1739314127-d13tRdtyipjHyTahJUqhni5LMzCWAVrN-0-66b5c32fc31540ea8c0397255539c96b)
推论3
例3 已知函数y=tan x,求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035003.jpg?sign=1739314127-jVyfWrOFBckoWuqouG2oPdBKjJL9thNf-0-8a8bf501904b24a64123fafcdd7a2add)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035004.jpg?sign=1739314127-XjH0WBXv8pJ6RWi2x2aCvrgQkpgc2Yxh-0-d380f7517c968affc935ec864ef3a3e5)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035013.jpg?sign=1739314127-1zwYy9vTYaqayXmovz1ucRhDrockU8y8-0-2212966f42edcd9feb1f5de7df1329ca)
例4 已知函数y=sec x,求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035014.jpg?sign=1739314127-7vnPEZO7NuwdrJzKp40h86e5A6tSUTUH-0-e4ab9412d6fc60cbe5ed6d943d15e151)
即 (sec x)′=tan x·sec x
同理可求 (cscx)′=-cotx·cscx
2.2.3 复合函数的求导法则
法则4 (链式法则)设函数u=φ(x)在x点处可导,而函数y=f(u)在x点的对应点u(u=φ(x))处可导,则复合函数y=f(φ(x))在x点处可导,且其导数为
f′(φ(x))=f′(u)φ′(x) (2.2)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035005.jpg?sign=1739314127-ceJlZeXjepmH7pOkeXZQDMtgVSsnyZkc-0-f53b23fb4bac2548dca118a0e591d6f5)
证明 设x有增量Δx,则相应的函数u有增量Δu,函数y有增量Δy,因为
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035006.jpg?sign=1739314127-mjIrys1e9RlvR8XdpSIcE9R7RNzqWxyS-0-2e19c0a9f25876b96f7f3b615d044645)
由于u=φ(x)在x点可导,当然在x点连续,故当Δx→0时,有Δu→0.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035007.jpg?sign=1739314127-mKqqGRj5LJqxcZChejktGN9EkuaAh2Rl-0-5ef198d07301f984a5c80d8b59818aba)
此法则可以推广到多个中间变量的情形.我们以两个中间变量为例,设y=f(u),u=φ(v),v=ψ(x).则
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035008.jpg?sign=1739314127-hwTHsX2OP1tROoyYkrg2K1ryjHdYJ1Oq-0-e248773194a3ae6202c989bf72fbfc80)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035009.jpg?sign=1739314127-xFP1excXbQ9HNVuw7EE2xEb2EdFVBMax-0-d18cebf5d1f9b7e4ddff99c0d4605a00)
故复合函数y=f(φ(ψ(x)))的导数为
例5 已知函数y=sinln x2,求y′.
解 令y=sinu,u=lnv,v=x2,则有
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00035011.jpg?sign=1739314127-hJ6PUcu6x6jBHUZsfTKibucaRQNYhWfA-0-d648f367787b76637dcd731fb30822c8)
例6 已知函数y=sin8x,求y′.
解 令y=sinu,u=8x,则,
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036002.jpg?sign=1739314127-Fl7fM8pZBU7nvFAgtHoKeprgwirdYXeV-0-4ac99a390a8939eae28a432e9b66bd7b)
对复合函数的分解比较熟练后,就不必再写出中间变量。
例7 已知函数,求y′.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036004.jpg?sign=1739314127-Km3OJ3yhVZSlMXKVyT7ne4eRgJM4Vr1A-0-8d38d6c6b5e6f1d9eb06cc458b553157)
2.2.4 反函数的求导法则
为了讨论指数函数(对数函数的反函数)与反三角函数(三角函数的反函数)的导数,下面先研究反函数(inverse function)的求导法则.
法则5 如果函数y=f(x)在某区间Ix内单调、可导,且导数不等于零,则它的反函数x=φ(y)在对应区间Iy={y|y=f(x),x∈Ix}上可导,且
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036005.jpg?sign=1739314127-jXMXfLDcGOHT4OSRJq77SBwjRmR8iLAq-0-c0121fc8286176cc97962ebf09a843ef)
此定理说明:一个函数的反函数的导数等于这个函数的导数的倒数.
证明 设函数y=f(x)的反函数x=φ(y)在y点有增量Δy,且Δy≠0,有
Δx=φ(y+Δy)-φ(y);Δy=f(x+Δx)-f(x)
当Δy→0时,有Δx→0;当Δy≠0时,有Δx≠0,则
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036006.jpg?sign=1739314127-DLayvt8sfgiqk58xzwXfi7j5ZwbmkMu0-0-6ffd76d1575d005ba7e2c8d8d43d9834)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036007.jpg?sign=1739314127-wg1H82nRoSZRERoWe4ldCUcNU3vuX2UP-0-ecf18198ee0b478ccb8215795d0aa8ce)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036008.jpg?sign=1739314127-pKzt1NhHzQQG67aXkbfk3YbCyXARzx7A-0-81db2e03f0badd6860de8288a10db8ad)
例8 求指数函数y=ax(a>0,a≠1)的导数.
解 已知y=ax是x=logay的反函数,由
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036010.jpg?sign=1739314127-jz0CJsyYlBuQWSonT0m3XZHCXRGQAtOd-0-2c2750dda5b7b027f4832c1a4a8a3198)
即 (ax)′=axlna
特别地,当a=e时,有
(ex)′=ex
例9 求反三角函数的导数.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036011.jpg?sign=1739314127-zfaf4d4qHQhrtSRp9WlIU9pZFlNRDTsI-0-6ca71e93e0370edd53bfc213b935f17c)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00036012.jpg?sign=1739314127-H9xwSCmfCGnvan4vsMKPq1u6pXK6fjXC-0-16ceb523c0217dc56e71f0350c9f2233)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037001.jpg?sign=1739314127-fd8Vad0nE9gUFymsQr1RWtvqdbl8wBHp-0-2a275f1deea88ea4a2c3ef6d0d8bad47)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037002.jpg?sign=1739314127-UA7bhYk70geoq30xyvfS6JQlufHYPxiV-0-38a80c252d83973c07e4882c6ca1d701)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037007.jpg?sign=1739314127-89ies07C15vRo3GTyvPW7KqxjkwfCwQT-0-9bd310647c647cefe2f6a756a19aece8)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037008.jpg?sign=1739314127-w221LzhUnQrTLObGJyn8HuLuoYRtFnJo-0-c9ee3a51cb9555022d650d39178f18b8)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037009.jpg?sign=1739314127-MAkV7XmKecWTCEYPIK7WDkYbsPH2kgL9-0-59576381267ec4e3b1f0434e80335ce6)
用类似方法可得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037010.jpg?sign=1739314127-8yWxPais328BVYcHpbcsKSlocXPtADZP-0-4619e405de293d42dafea9d23aabf663)
例10 求幂函数y=xα(α为实数,x>0)的导数.
解 由于y=eαln x,故
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037011.jpg?sign=1739314127-jNYEEu0iIJURhgL0zqeLbaCS24QBltlw-0-c5a747c0c3940b88b17bb06f34dde076)
即 (xα)′=αxα-1
2.2.5 隐函数的求导法则
前面,我们讨论的求导运算都是针对函数y能明确写成自变量x的解析式y=f(x),这样的函数,我们称为显函数(explicit function).但有时遇到两个自变量x,y间的函数关系是由方程F(x,y)=0所确定的,这样的函数,称为隐函数(imlicit function).
例如,x2+y2=1和exy-xy=0都确定了x和y之间的某种函数关系.
求隐函数的导数并不需要将y从方程F(x,y)=0中解出来,亦不需要引进新的法则,只要对方程F(x,y)=0的两边分别对x求导,便得到所求函数的导数.求导时注意y是x的函数,利用复合函数求导法则,便能得到所求函数的导数.
例11 求由方程y3+3y-x-2x5=0所确定的函数y对x的导数.
解 方程两边对x求导
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037004.jpg?sign=1739314127-MegvzlACMY072CwkcuYI0cJz0NifEYE1-0-2e74c991478a2ec33dd5b813b7ef8b5b)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037005.jpg?sign=1739314127-tbH1CLgmwlDibQv4fClsZDCeYYfoZfS0-0-ef81ca73bb17ae80f4b648773b012b55)
例12 求由方程ey=x2y+ex所确定的隐函数y的导数y′和y′|x=0.
解 方程两边同时对x求导,得
ey·y′=2xy+x2y′+ex
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00037006.jpg?sign=1739314127-485kSuAYWevjmbFA6jYz0FHaJF9pLNdI-0-6114e2b17724677f82083798388f8144)
当x=0时,由ey=x2y+ex得y=0,代入上式得y′|x=0=1.
2.2.6 对数求导法
将函数的表达式两边取自然对数,并利用对数性质将表达式化简,然后应用复合函数的求导法则,将等式两边对自变量求导,最后得出函数的导数,这种方法叫做对数求导法.下面通过两个例子说明这种方法.
例13 已知函数,求y′.
解 将等式两边取对数,得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038002.jpg?sign=1739314127-YDv49v96aYD9RQ26EQJyUlZaBPd7RvsN-0-146b77fb4a2db72425e773fdb92ce10e)
对x求导,得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038003.jpg?sign=1739314127-kETPNhouyxKiurj9shVOk3s5WMYMBFTC-0-dd5e2f3b3dc9306b8ac7a7c87c14b839)
例14 已知函数y=xsin x,求y′.
解 两边取对数,化为隐式,得
ln y=sin x·ln x
两边对x求导,得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038004.jpg?sign=1739314127-wrajkKt2tsEKNUcTHQdbaxznnRjBZXeP-0-2651d79fc0adb24baba79640bddfd987)
*2.2.7 由参数方程所确定的函数导数
当函数由参数方程
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038005.jpg?sign=1739314127-ESamwuFqSik2smv9Zd6OkNAfIasiCFWI-0-018f30b64d131dc5ed714378c09c5dd8)
确定时,在不消去参数t的情况下,可以方便地求出y对x的导数 ,过程如下:分别求出y对t的导数
,及x对t的导数
,即得y对x的导数
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038009.jpg?sign=1739314127-HCgylicivfdbe1JR6F1JBjX7GsfKI7vQ-0-6f131b8e1c0bf21948a23c19d9df63d0)
例15 求由参数方程所确定的函数的导数
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038012.jpg?sign=1739314127-FpY6XBOw6wOb50b0znleRbSL9mWlSeLY-0-b76db06c8529649a4caf4e7a61b43c23)
故
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038014.jpg?sign=1739314127-7lVJAl01yGvpD2nDJGwaDcY1ubggaUU6-0-23b022ee73c73e2f53199d04bf3145cb)
为了便于查阅,我们列出基本初等函数的导数公式
1.(c)′=0(c为常数). 2.(xα)′=αxα-1(α为实数).
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00038013.jpg?sign=1739314127-DD7dsBAQdrm4TEraktwVbSwtTPKknsum-0-48fea91f4f7c6026bbcd509962b5b3be)
5.(ax)′=axlna. 6.(ex)′=ex.
7.(sin x)′=cos x. 8.(cos x)′=-sin x.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039001.jpg?sign=1739314127-1fbXDGIn0Ug85lfWzdRf6EUbQKQjU7jn-0-189e406d1ef6381bba6f958629dd3a08)
11.(sec x)′=tan x·sec x. 12.(cscx)′=-cotx·cscx.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039008.jpg?sign=1739314127-KJodi4yKiubcGOaBXOIKnQEoHI7A2LlG-0-34e2345c3a5607214cbac3f050ee7132)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039009.jpg?sign=1739314127-fvVrdVz9wRZr4XVae5y3db7XMmqifRaa-0-31dc6c8842bbd1b472cbbfc4f36e3526)
2.2.8 高阶导数
函数y=f(x)的导数f′(x)仍然是x的函数,我们可以继续讨论f′(x)的导数.如果f′(x)仍然可导,它的导数就称为函数y=f(x)的二阶导数(second derivative),记为
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039002.jpg?sign=1739314127-pRtRxFpHFU1vXYlpNAQEjXNt2ndELDrg-0-c0ea548759dfe1b934cd7be1c6030876)
依此类推,如果函数y=f(x)的n-1阶导数的导数存在,它的导数就叫作函数y=f(x)的n阶导数(n-th derivative),记为
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039003.jpg?sign=1739314127-OqqVuk9TqN2HHmPyG0u0nNhXQNqOzwHL-0-6fb97d9f8c3ef6e3eb860760ee02d0b2)
函数y=f(x)在x点具有n阶导数,则f(x)在x点的某一邻域内必定具有一切低于n阶的导数.
二阶以及二阶以上的导数,统称为高阶导数(higher derivative).
如物体的运动规律(函数)是s=s(t),则s(t)的导数是物体t时刻的瞬时速度v(t),即v(t)=s′(t).加速度等于速度v(t)在t时刻的导数,即加速度为s(t)的二阶导数α=s″(t).这就是二阶导数的物理意义.
显然,求一函数的n阶导数,只需对函数进行n次求导.因此,求高阶导数无需新的方法.
例16 求的二阶导数.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039005.jpg?sign=1739314127-bOKsIuUUEe5qdBwu6U8U9feI6upTYOoE-0-f52d94559998972a786c04409d0f8105)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039006.jpg?sign=1739314127-kOrharDEXL9V47PbsP8lbPlGVpJP0Uhx-0-c7112d648b635241267e5820c9592d21)
例17 求y=ax的n阶导数.
解 y′=axlna
y″=ax(lna)2
…
y(n)=ax(lna)n
即 (ax)(n)=ax(lna)n
显然 (ex)(n)=ex
例18 求y=sin x的n阶导数.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00039007.jpg?sign=1739314127-1BvvvIMQnp7GYf2hIMhGbabhmS9nzsPF-0-e54c5d731ea12378355c0ffdf2d153d4)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00040001.jpg?sign=1739314127-pU2iSzQj46iMu0NBzHJ9JQjxQCGHO9F9-0-29d1241ebf37517ab2ee9268f39736c6)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00040004.jpg?sign=1739314127-nriUFBzgFhPaJbrXIYNTo3MWTHjVqgS3-0-cd5f1a5ecb95871c7f2ea03dc36007fd)
同理可得
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00040005.jpg?sign=1739314127-dVhxXMX0flooSMo3piCTFtnzzByMD6i2-0-0c0f48dbd223441c54d583a42944ca0b)