![医用高等数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/549/31729549/b_31729549.jpg)
上QQ阅读APP看书,第一时间看更新
1.3 极限的运算
1.3.1 极限的运算法则
定理 设函数f(x)和g(x)在自变量x的同一变化过程中(x→x0或x→∞)的极限分别为A和B,简记为limf(x)=A,lim g(x)=B.则
(1)lim[f(x)±g(x)]=limf(x)±lim g(x)=A±B;
(2)lim[f(x)·g(x)]=limf(x)·lim g(x)=A·B;
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022001.jpg?sign=1739313902-YirpjDepn6j9PffGrrwZYRql8cvN2EVB-0-7ab4d79a41d319ee5bdee5dd96e0def0)
其中(1)和(2)可推广到有限个函数的情形.而且(2)还有如下两个推论:
推论1 lim[C·f(x)]=C·limf(x)=C·A,其中C为常数.
推论2 lim[f(x)]n=[limf(x)]n=An,其中n为正整数.
例1 求 .
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022003.jpg?sign=1739313902-GxjaG5Z1ywqszwdAsV9FSuTXN6YnJXof-0-9808865b7a00552d8d784f8cedb9096e)
例2 求 .
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022013.jpg?sign=1739313902-09uakZ4xc8dwk99moDen0Cs2YyAP5EGd-0-72e6b301bf6e934d2e778afc1d7bd6e7)
例3 求 .
解 当x→∞时分子和分母都趋向于无穷大,不能直接用法则(3).我们可先将分子和分母同除以它们的最高次方幂x3后,再求极限.
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022004.jpg?sign=1739313902-73cXWAG54fayQlGGt6sBj2EHJyN9HjyI-0-20f774548548345782f80703107cb1b3)
由此不难证明:
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022005.jpg?sign=1739313902-Caz4oPk6Zvify2h4Vh245X3G9aDtvvvM-0-93a078e01e6a7e47a45051dc37f05863)
其中a0,b0均不为零.式(1.9)可作为公式使用.
1.3.2 两个重要极限
在函数极限的计算中,下面两个极限起着重要的作用(证明从略):
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022006.jpg?sign=1739313902-o9oMTlQtthsVTer2V7pUYU7zobIiOLZd-0-d1040a8a66c39fd2a3c21af52459e5bf)
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022007.jpg?sign=1739313902-Oztg0ri4jtTmHWHH3ZwUqWjd9R42KZwN-0-61a6b7fb47005e318c02ec87821685a4)
其中e≈2.71828,是一个无理数.以e为底的对数记为ln x,称为自然对数.
例4 求 .
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022009.jpg?sign=1739313902-PbpU4vRzFg926LZcAS6S38MqNV3i0PLV-0-a30f1e5f4b0a449926426e88dd7ed69a)
例5 求 .
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00022011.jpg?sign=1739313902-AeIBo0PHuR6cwkdsn3MuvDpAHd7nSynv-0-fac83688dc905f78bbbdfe1e98034e15)
例6 求 .
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00023002.jpg?sign=1739313902-3waheNA5GEy5shVuODGX52VmHHXKjgRs-0-6c56c2dd866ba36e986d95ede87bc7d6)
例7 求
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00023004.jpg?sign=1739313902-rFpFysH4h9V55z5hPRJefYLYBncsdpy0-0-12da137b1473e4718b83835ce5a06c40)
例8 求
![](https://epubservercos.yuewen.com/B52511/17180251305301906/epubprivate/OEBPS/Images/img00023006.jpg?sign=1739313902-D5PJGtD1cA1VsPk7sa12NQ3BU7Av28l7-0-b875774f9abc19895b2d73ca863f4810)