![有限元仿真及在电连接技术中的应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/21/33893021/b_33893021.jpg)
上QQ阅读APP看书,第一时间看更新
2.2 功与能
在弹性力学分析静力问题时,加载过程永远是逐加、缓加过程。在这一过程中,所有外加载荷都是由零逐渐加到它的额定值,由其引起的位移和应变也是由零逐渐达到它的额定值的。对于线弹性体,外力(内力)与其作用点的位移之间的关系,以及其应力与应变之间的关系都是线性关系(见图2-6)。
1. 实功
图2-6a中,力Pk在其作用方向上直接引起的位移上所作的功叫作实功。对于线弹性体,Pk与
呈图2-6b所示的线性关系,实功的计算公式为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/46_04.jpg?sign=1738864865-sRNqmpYkHBKOoTXaj9OWhL6uQ1NGFuBl-0-bbf934dcb568e43325dd727c8cb0f424)
2. 虚功
如图2-7所示,力Pk在别的原因(如Pm)引起的位移上所做的功叫做虚功。其计算公式为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/46_06.jpg?sign=1738864865-3rEOs4vRyEVdiiy1NUDwKvLCxBUaZJNM-0-d38ca2a9f9266fbd8221a72afa0b9fa6)
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/46_07.jpg?sign=1738864865-mdsWYbE0ukrPHerbwSLwhkMNJrqYuD5j-0-2717c13d156f616b9496f5911bbf3179)
图2-6 外力作实功
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/46_08.jpg?sign=1738864865-mHuJeBEZoZQtZqeBw4wbgnHHtbpyOBPy-0-73723ab5d2386e2fd9ff13b4b5fbf4c7)
图2-7 力作虚功
3. 应变能
应变能由内力(或应力)所做的实功来计算。对于一般弹性体,应变能以应力、应变表示,其形式和简单拉伸一样。弹性能密度为
一维:
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/47_01.jpg?sign=1738864865-rxAEjaQ5SovO39VClmm3BCp45LvgttUE-0-d2ef05f7c13138c7da8dd2b584ce9f31)
二维:
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/47_02.jpg?sign=1738864865-4x6xayHttf9vrUtV0tRXg7xIr0LvPuwX-0-cf96580adddf7e9d068ef9eeb65fe6fa)
三维:
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/47_03.jpg?sign=1738864865-d4QrmDYi9ZntLMZveeSAqyyurAHnNkD4-0-995d4f86083e6d16f86ffd6204773c0b)
以矩阵形式表示为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/47_04.jpg?sign=1738864865-oQscfmsgB7P3tlq5ee9g7NQerBW3JnvP-0-3af0bebf9891da92a94b1512be0bbd61)
应变能:
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/47_05.jpg?sign=1738864865-a7KiYeFg4FqS4uJyEiq7LnwnbNxldTXK-0-d89c5ffbbaf7d189cde19356dc4278fe)
将式(2-10)代入式(2-17)得
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/47_06.jpg?sign=1738864865-WDr5K4IYzfZfsAMyspCAGGvoMCtWFU3F-0-24e0e2ee1a1b0dc2c417311bf8505474)