![有限元仿真及在电连接技术中的应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/21/33893021/b_33893021.jpg)
2.5 弹性力学有限元求解
力场基本方程为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/48_07.jpg?sign=1738863747-eO3Gy5PQW9IRn30W9IXl9tFPqmLItUpA-0-10df74efc9bcebbbc875156748a23ec4)
其中,M为质量矩阵;C为阻尼矩阵;K为刚度矩阵;u为节点位移矩阵。
静态问题:
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/48_08.jpg?sign=1738863747-3vEHwGjJFNkt7evLWtxFYya9dypfjBAO-0-93da1c769390baa920125e7be9513385)
2.5.1 基于最小势能原理的变分法求解
2.5.1.1 变分法推导控制方程
以简支梁为例,利用变分法推导控制方程。两端简支梁受一横向载荷(见图2-9),其弹性势能是由梁弯曲变形引起的应变能,外力势能是由梁的扰度引起横向载荷做功产生势能。设梁的扰度为v(x),外力势能为Π1,弹性势能为Π2,则
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/48_09.jpg?sign=1738863747-mLD1sczLz0yumhchGKnTcCLwzduqpxHU-0-38478839544758a1f46ba4c4e55fe9f5)
图2-9 两端简支梁
弹性势能:
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/48_10.jpg?sign=1738863747-mrBu2SrK2CYzO5vL8GzKt5b8xuP1HT4j-0-d1930128f7be4614422c8240ef7fe027)
外力势能:
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/49_01.jpg?sign=1738863747-vjtLDRlOClCXGfSKJozZw8foOb816ab4-0-b44385ecfb6273c95f215e21fa627631)
总势能为Π=Π1+Π2,即
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/49_02.jpg?sign=1738863747-7riu8cvw5469Wus37B0dXORzLIjpgwp8-0-6b41f4fe77afd11a1cd96d90a184cd2a)
由最小势能原理可知,粱在外力作用下处于稳定平衡的条件是其总势能取极小值。
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/49_03.jpg?sign=1738863747-a8fz5PWMxDfI2NFhRm798dtQPHFHewhL-0-928b53879f68a59caeee2e3fb914879b)
将式(2-31)第1项中的微分变分符号互调,并将该式代入式(2-25)有
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/49_04.jpg?sign=1738863747-YiCBWoRLjLHu5JidL3UucywkwqQQG3gO-0-8435a93a6cd03a9cc6d0eb87aebf4507)
将式(2-32)的第1项分步积分两次变为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/49_05.jpg?sign=1738863747-S4dUgWeGk24cL5POk7N1S5IiY8flwqbE-0-8e1510ed1f95204afc41f50a571d7dc4)
式(2-33)中前两项给出了边界条件,第3项给出了控制方程。无论是两端固定梁、两端简支梁,还是一端固定,另一端自由的情况,式(2-33)前两项均为0,依据变分法得控制方程:
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/49_06.jpg?sign=1738863747-hKc2muwYIzNHgYTQmgNEkLZQiDgmnqA9-0-b1cfc3aeffef2070a0e4bac7bd4899ea)
由式(2-33)可知,若能找到一个位移函数v(x),它既满足式(2-33)的前两项(边界条件),又满足最后一项(控制方程),则它就是问题的精确解。但是,由于选择一个精确位移函数v(x)很不容易,所以在实际应用中往往只让v(x)精确地满足式(2-33)中的部分项,而近似地满足另外的项。
2.5.1.2 有限元法
将简支梁分为n个单元,其单元号与节点号如图2-10a所示。若任一节点i处的扰度为vi,转角为θi,则每个单元的位移插值函数可表示为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/49_07.jpg?sign=1738863747-n229LLhHIwD7sA7HSkHtijsE2QwzcfHa-0-c563e399552712eac7483d73b8e013d7)
图2-10 受弯简支梁的插值函数挠度曲线
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/49_08.jpg?sign=1738863747-AEw19PsedOPOnfN6aAxbFVRnqSpjeH5a-0-d0687658ded03edbd28bc81bb41d7032)
各单元位移插值函数所连成的曲线作为梁的位移函数,如图2-10b所示。总势能沿梁长L的积分变成沿每个单元长度le积分之和,即
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/49_09.jpg?sign=1738863747-O0yWWjdm4Ou5SZ9WDfhICVw0IrFBoCPn-0-1e27d0cd99b3d9591a1e9b2ae9b775f9)
式中
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/49_10.jpg?sign=1738863747-PbVjwrnRTpmbkZx1GZS8fWzcdqRcvBnG-0-e8164e24134bd4b0eb4809737b3d3ee0)
将式(2-36)代入式(2-25)有
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/49_11.jpg?sign=1738863747-XUWdYTTW1ha9CQvN2do4uGx3OHDqgYKf-0-e61b5aad77c718bd74daedcfa689ccb4)
由式(2-38)可知,求得每个单元的δΠe,代入式(2-38)就可以求得每个节点的vi和θi(i=1,2,n,n+1),从而得到位移函数ve(x)。
1. 求单元位移函数
图2-11所示为任一单元(e)变形后的位移曲线ve(x),其在i,j节点处所示的位移与转角均为正方向。现设单元位移函数ve(x)为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/50_01.jpg?sign=1738863747-0VossuH8azBodT3PYke4g6iPm43lUVCx-0-82b49fbccaed13dbe859ccd75657f8e8)
图2-11 梁单元位移函数
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/50_02.jpg?sign=1738863747-OddcOyiEHuTJ8MAzBN0tRsl8aIIVxWXC-0-cd666af134c6d0f3975286d7d128551e)
式中,ai(i=0,1,2,3)为待定系数。若其两端的位移与转角为已知,则由边界条件可求出ai。边界条件为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/50_03.jpg?sign=1738863747-ixQZo4Qg9IPBGeHAAjEMaDqq4Q15DEuy-0-3eac86cba6b022d4e494c337e62b8e03)
代入ve(x)= a0+a1x + a2x2+ a3x3和v′e(x)= a1+2a2x +3a3x2,得
解得:
代入式(2-39),按vi,θi,vj,θj的顺序加以整理得
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/50_06.jpg?sign=1738863747-cmP4K70rIvf93Y9UISBs9Oimn4HeBXOn-0-dbd0b473d15f94fdedd44da85f7f677b)
上式就是插值形式的位移函数,写成矩阵形式为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/50_07.jpg?sign=1738863747-F6GrWxk3E1aBhfL7stW1kaddGl9kKyBA-0-ba575b296fcd82c54a2dd3e1865e5eff)
式中
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/50_08.jpg?sign=1738863747-T8FypZQMNGZnZpPrskKt1JukUvkLAp2k-0-69b1037ebb505f0ab3519259acd69484)
令
N =(N1N2N3N4),δe=(vi θi vj θj)T,得
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/50_09.jpg?sign=1738863747-vN36rvgV51dOFqUShQhomFSGpJ0zZmYE-0-1f43103efaee5348fa63bdd5dda53eb3)
2. 形状函数
式(2-42)中的Ni(i=1,2,3,4)称为形状函数。在梁单元中,它表示一个两端固定梁只产生一个单位位移时的梁弯曲形状,如图2-12所示。
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/50_10.jpg?sign=1738863747-FDI2RE1XHmgt17FHCszGIOp2gXjDlpvd-0-b691feafa45382ecf0863ec0e393478e)
图2-12 梁单元的形状函数
3. 求Πe(单元总势能)
由式(2-43)得
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/51_01.jpg?sign=1738863747-dOjuXn6LcMvEHlSnFxXhwS7wwwWn9Seq-0-97d2fcbccaf28338187547c23200c478)
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/51_02.jpg?sign=1738863747-x8x9BdqSiYtaZqhpQCE04M8T7KRk69c9-0-3d68d056aa81851979362305ac60845e)
将式(2-43)写成如下形式:
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/51_03.jpg?sign=1738863747-XFlwgzSDu5p3nouV9kR4luKmhh0YYdKT-0-79e61c243841d9634ac81e315db69bd9)
将式(2-45)、式(2-46)代入式(2-37),有
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/51_04.jpg?sign=1738863747-n0QI17j9kBIqCiWfRVY76PXrxLO47mR1-0-63f57ff3b7b9d7f444cd1ae038bef0ca)
4. 求δΠe
因为Ni是x的已知函数,所以δΠ是由节点位移的变分而引起的。故式(2-47)的变分为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/51_06.jpg?sign=1738863747-MJputta1Ls5IiHiJ66ewFZSZXgVHuvAE-0-44266c72b044d8bf9cc5db535522f7e0)
将提到积分号外
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/51_08.jpg?sign=1738863747-8cDCQW0KjVqWVh3P37Gnr5ivRvvFvevU-0-9faa729de6acc0338e7350dcec650c57)
对式(2-49)第1项进行积分
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/51_09.jpg?sign=1738863747-RuwUY1cN6Fl1FQ5A97RHLalXxW6k2owb-0-5588e1c69202347897dbb719ab512108)
将代入式(2-50)并积分得
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/51_11.jpg?sign=1738863747-wZIwkiqoKAkmb0Fp0zEQqkzdVug86h5v-0-a65995b446d6a490a30902be7b2c3f44)
对式(2-47)第2项进行积分
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/51_12.jpg?sign=1738863747-H0JAdZ6IFImY9oU5sptq0ypdakkn45hp-0-38df3495ea57ecf19ad1b181f33cc185)
将Ni代入式(2-52)并积分得
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/51_13.jpg?sign=1738863747-ioEMRWGkKDU4DmHkKm9KjGHnDCtcSwVG-0-6dfd72e01a337342c353763bc7e01af9)
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/52_01.jpg?sign=1738863747-V4mwxLWFU8Jx3D0anNKBQoyGxAgdHnyZ-0-f10c2d54ab4a6ceaff45176c8092ed40)
不考虑梁单元轴向位移时,式(2-51)是梁单元的刚度矩阵Ke,而式(2-54)中大括号{}内的第1项,是梁单元由节点位移vi、θi、vi、θj引起的节点力Vi、Mi、Vj、Mj。式(2-53)是承受均布载荷q的两端固定梁的固端反力,由上向下依次为V0i、M0i、V0j、M0j,将式(2-54)写成:
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/52_02.jpg?sign=1738863747-h1pwOHpDxkg6i9AKctRTwIHEddCSQuND-0-a60c8356ecdfdc6aa2ced052fac84ec9)
由δΠ=0求解节点位移,将每个单元的δΠe式(2-55)代入式(2-38),得
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/52_03.jpg?sign=1738863747-FAil650wreWc2uGwLXLUqXHR1jLtEm1K-0-5eda7f80faa3f13cf26bfffee6670f54)
由式(2-54)可知,与δe中节点位移的排列顺序是一样的,若将式(2-56)各项按梁的节点顺序排列,注意到δδ=(δv1δθ1……δvn+1δθn+1)的任意性,则由式(2-56)可得
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/52_05.jpg?sign=1738863747-7yuXMZLgJTsFqI4BsKdNGDLz7Ujtd0aK-0-13180529eb82ccd83c1ff6482eac5081)
式(2-57)中KZ是由每个单元刚度矩阵Ke集合而成(整体刚度矩阵),FZ0是由每个单元的固端反力集合而成,若将该矩阵前加上“-”号,则它就是等效节点载荷。
2.5.2 二维问题的有限元求解
1. 三角形单元的有限元求解
(1)位移函数 图2-13为任一三角单元,其三个节点的局部码为1、2、3,以逆时针为序。其节点坐标为(x1,y1)、(x2,y2)、(x3,y3),其节点位移为(u1,v1)、(u2,v2)、(u3,v3)。该单元内任一点(x,y)处的位移函数为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/52_06.jpg?sign=1738863747-3nLklojhR4R1dTFmFRBCYXjDvmswkDew-0-7f1e78d2183af783e2970dd0335c0653)
图2-13 三角形单元
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/52_07.jpg?sign=1738863747-IrjAPxUsYo55RPMoqgPOU8QJ0r2L5Crj-0-0e24dab1506db0a8e38f02334cc78a5c)
将节点坐标值和位移值代入式(2-58)有
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/52_08.jpg?sign=1738863747-cIsbt8eWHQQPY24ITkapdxP7smyTXXgZ-0-2b821bb321424b4f6207dc8b081bcbfc)
若节点位移和节点坐标值均已知,则由式(2-59)可解出α1、α2、α3,由式(2-60)可解出α4、α5、α6,即
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/53_01.jpg?sign=1738863747-TiipmW9txKYP7EDi3qfc2SGArbWNiYDr-0-ea2a1ebc98b1715859be4cedb470f9b9)
式中
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/53_02.jpg?sign=1738863747-0gLsIAVNCNK9R2KUpb2cZL7AhTreKjG3-0-86f628f27a3ecebf51b53ae9d3aa7b5c)
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/53_03.jpg?sign=1738863747-xsIp55kn7MESIHGTSqygUDB6VLB4yu2c-0-22a61ee49d5935559d99159b29cfe4a5)
合并相同位移量整理式(2-58)得
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/53_04.jpg?sign=1738863747-nnYe3TeqvjuvxF3V1JV9QqnE1lWOeY5x-0-40be20cba2bb1de11d294a22ed91d11b)
令
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/53_05.jpg?sign=1738863747-jeRfLW0OwNeZrEwOaaxdmPWvN84Oq9Uo-0-a85aa603ddfc101635ac1b01eb936b77)
则
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/53_06.jpg?sign=1738863747-uUSMhqydBVjnYSQjpzhuLbaWbOuwzz4L-0-702355e2efadb6791a4e6114744d3a5d)
令
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/53_07.jpg?sign=1738863747-0pwn1o0hMbiGvGm0hVo1WdwNzLXbd6GT-0-2418954427fdfd46faf1304f941b67be)
则式(2-65)变为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/53_08.jpg?sign=1738863747-59FC7le143gApLpO2Fnecpp33JneoFO6-0-470946efdd9cb779e2f3ed98da461a38)
式(2-66)是以节点位移表示的三角单元的位移函数,其中N1、N2、N3是形状函数。其特点是Ni在本节点的值是1,在其他节点的值为零,图2-14为N1为1的情况。
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/54_01.jpg?sign=1738863747-c0zmpl0ClPYhPuQ3yL5ouYTncyZTY3hX-0-6abf450c026bf2391c2de4e066d4131f)
图2-14 N1描述的形状
(2)单元刚度矩阵 由节点位移求应变,将式(2-63)代入式(2-5)有
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/54_02.jpg?sign=1738863747-srmxfqcfE7BoD50MMAB3ypTRIvHKY9MM-0-092d342daece6a00c915bb60c6df1335)
写成矩阵形式为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/54_03.jpg?sign=1738863747-Nao78vqB12yaaxe9JtwTV6TX53nMSxXn-0-4a02c59560dc9c9baa426e5d17c1a57a)
令
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/54_04.jpg?sign=1738863747-qUHQLH61rImtdS8UoHu1Am0zhCk94jp1-0-6bf02281b6ed7e5a7e9ca97d46786d32)
则式(2-68)变为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/54_05.jpg?sign=1738863747-HEIGyXbp3LXLD0kfa1vcqE7Bm9g3GnOG-0-59bd3bea8322a952a26ffd97fdfeeb95)
B称为应变矩阵,该应变为常应变,即在单元内各点应变均为一个常数,这是由于所设位移函数是线性函数的缘故。
由节点位移求应力,将式(2-70)代入式(2-10)有
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/54_06.jpg?sign=1738863747-YDjl1aXnAq7aBOYtbI9GGZZ4PK3Ju8nD-0-f8978b113cd9bb84d4ce7570fe5ffcd8)
令
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/54_07.jpg?sign=1738863747-8FofLwtZMPMmeXGIb0JzhgtVnKWIGdC4-0-de7c8ef0a877c9cb7dfef3a2f921eee8)
则式(2-71)变为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/54_08.jpg?sign=1738863747-QK9rMMvdsK2DNZHpB0d7Pygr5FcbqF3d-0-06298314394e230d53606edd6ad902a4)
S称为应力矩阵,因为D、B均为常数,所以在单元内σ为常数,故称三角形为常应力单元。
由节点位移求节点力—单元刚度矩阵。
图2-15a为平面内的任一三角单元,设平面受力后节点产生位移u1、v1、u2、v2、u3、v3(其内部各点的位移由位移函数决定),同时产生节点力U1、V1、U2、V2、U3、V3(节点位移与节点力用一箭头表示),而其内力为σ,即σ=DBδe。现给该单元一虚位移(见图2-15b),此时3个节点将发生虚位移δu1、δv1、δu2、δv2、δu3、δv3,内部将产生虚应变。
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/54_09.jpg?sign=1738863747-EDthMLI0Jr7ehiVWQaVihXEERAPFH40F-0-6accd97de36ee25bd4ee94e00db375d2)
图2-15 三角单元的节点力、内力与它们对应的虚位移与虚应变
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/55_01.jpg?sign=1738863747-VWoSx04K4UPaJTFtQOxJB9DZcExZYlBW-0-44eca52d00a52b0c1a5574aff4ece91b)
式中
δ δe =(δu1δv1δu2δv2δu3δv3)T
该三角单元的外力虚功为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/55_02.jpg?sign=1738863747-qQ7n6H4CwwAuY6WOsQzgufi8U4d9owkq-0-2039c689034a97866b9a58549f37d2dd)
式中
Fe =(U1V1U2V2U3V3)T
一般弹性体的内力虚功为
Wint =∫vδ εT σdv
式中,δεT为对应虚位移的虚应变,σ为原平衡力系引起的应力。
将式(2-71)、式(2-74)代入上式,则三角单元的内力虚功为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/55_03.jpg?sign=1738863747-1CdJsnnCcAdSWTXkBv1emKdbl32XJitQ-0-63982a0119d5a4b4f3675be875469156)
根据虚位移原理,式(2-75)和式(2-76)相等。
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/55_04.jpg?sign=1738863747-ZPEb4DerdTxxPaFTBOqAvDxEJcem42tt-0-bc90b8e94808d39abff8ba3ee262915f)
若单元厚度为h、面积为A,再将、δe提到积分外,式(2-77)变为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/55_06.jpg?sign=1738863747-OBkRSitXJ6M24eEtKPQp9ghl1a3laqtT-0-9dfd0a1f638685e021f0015e0e7c6fd5)
由于的任意性,故有下式成立:
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/55_08.jpg?sign=1738863747-06No5nUtsDtpDP8SMskQ7TNSxhDgj3QQ-0-962b0bcde77208e348ddf26dae3d6a83)
式(2-79)为一矢量等式,是6个代数方程,表示出e单元的6个节点力与6个节点位移分量之间的相互关系。
令
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/55_09.jpg?sign=1738863747-ZwJ1uM9ym7yqLvB1fefixyCC2nT6RbD1-0-33075395082fb65aa55e3e75a8de334f)
则
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/55_10.jpg?sign=1738863747-2wQaNVguXcJP4nkEBpoLAFGZfUv2wWbW-0-e8029b4d016df87eb846fb93350a6271)
式(2-81)是节点力矩阵表达式,式(2-80)是三角单元刚度矩阵,因为是在整体坐标下推导的,故无需再进行坐标变换。由于弹性系数矩阵D是对称的,所以Ke也是对称的。对不同的问题,Ke中的B和D是不同的。一般情况下,B为函数矩阵,需经积分运算。对于平面问题的简单三角形单元,B是常数矩阵。式(2-80)虽然是由平面问题简单三角形推导而得,但具有普遍性,是位移法有限元分析中普通适用的单元刚度阵表达式。
2. 矩形单元有限元求解
(1)位移函数 图2-16是长为2a、宽为2b的矩形单元,局部坐标节点码如图所示。因其有8个节点位移,故其位移函数可设为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/55_11.jpg?sign=1738863747-xKQyPtKLeZw4eoUfGf93gIqxgKcoyFip-0-631b881c06e671e261847ba588795b51)
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/55_12.jpg?sign=1738863747-GYNJ3YU7OBXG3nw9GGebP9lifJZfywHm-0-128717c58f842c2b14342917eb65bfe6)
图2-16 矩形单元
式中
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/55_13.jpg?sign=1738863747-D80gxfi7hH8QmmbtrheFglhqaeXdVwNw-0-883a44694fd51405413a3d9171e27362)
上面的Ni(i=1,2,3,4)是根据形状函数的特点(在i节点Ni=1,在其他节点Ni=0)而得到的。
(2)单元刚度矩阵 将式(2-82)代入式(2-5)
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/56_01.jpg?sign=1738863747-RDny40AvAuwyr9PEUsGQbwEvbvgTou9c-0-60b6e8e2754d20d1a00251cf8101a0a5)
式中
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/56_02.jpg?sign=1738863747-3WTbeVUR8Jjlj0scM5ps2MJ5HbnNY4RO-0-88d0fde4727d8fa5b9bbe86fb06172ca)
δe =(u1v1u2v2u3v3u4v4)T
由式(2-72)得
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/56_03.jpg?sign=1738863747-M9SC9LLWsz2sLZ4DtXAX9NgzarC5MWRe-0-edf83510cd39daf3729aa20ff689374e)
由式(2-80)得
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/56_04.jpg?sign=1738863747-vz2SjXliO8srzRTLpbLvuKnFfeuGMx4g-0-6cb686687d86fafabfbbfb7f7475e8ce)
式中
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/56_05.jpg?sign=1738863747-qFV4EUh8kQCtb2AN2nh2dIqIfbBhcnOD-0-7043bb542650035f3148221fe47293b3)
1)如果域内有不同方位的矩形单元,须将它们的单元刚度矩阵Ke都变换到整体坐标方向才能构成总刚度矩阵KZ。坐标变换矩阵由4个矢量变换矩阵构成,它是一个8×8阶的对角矩阵。
2)至于节点载荷列阵的计算,可利用虚功等效原则去计算。
2.5.3 三维问题的有限元求解
1. 四面体三维单元形状函数
实际物体是立体的,弹性体受力作用后,其内部各点将沿x、y、z三个坐标方向发生位移,以u、v、w表示各点沿x、y、z方向的位移:
u = u(x、y、z)
v = v(x、y、z)
w = w(x、y、z)
三维结构可以划分成很多小四面体,大量的小四面体拼合起来,可以逼近任意形状的实际结构。以四面体顶点为节点,可以构造最简单的三维体单元。
图2-17表示一简单四面体单元,其中4个节点的编号设定为1、2、3、4。单元变形时,各节点都有x、y、z的3项位移,单元有4个节点,共有12项节点位移,以列阵表示为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/57_01.jpg?sign=1738863747-hF20GpoV8cFdNxKhWvwJyPQPBFPUgL3S-0-5ccb099322eccae63b586d8df09b1e45)
图2-17 四面体单元
{δ}e={u1 v1 w1 u2 v2 w2 u3 v3 w3 u4 v4 w4}T
{δ}e称为单元节点位移,这种单元具有12个自由度。单元变形时,单元内各点也有沿x、y、z方向的位移u、v、w,一般应为坐标x、y、z的函数。对于这种简单的四面体单元,其内部位移可假设为坐标的线性函数,即
u=a1+a2x+a3y+a4z
v=a5+a6x+a7y+a8z
w=a9+a10x+a11y+a12z
上式含有12个a参数,可以由单元的12项节点位移确定,将4个节点的坐标值代入上式中的u式,对1、2、3、4这4个节点分别有:
u1=a1+a2x1+a3y1+a4z1
u2=a1+a2x2+a3y2+a4z2
u3=a1+a2x3+a3y3+a4z3
u4=a1+a2x4+a3y4+a4z4
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/57_02.jpg?sign=1738863747-5MLRDtFNQ3XUenVZcwc2Lu8AKZswCfN4-0-3a04467f22f311e62eb7c305cdabeba6)
式中,V由计算下列行列式得到:
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/57_03.jpg?sign=1738863747-A6bg2mldnTyXGlYALKDDSLmSUqfIPtnB-0-935228b6e4fafb36eb3dfa1d1d9b9e77)
V是四面体的体积,方程式(2-87)中的系数αi、βi、γi和δi(i=1,2,3,4)由下式计算:
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/58_01.jpg?sign=1738863747-XvohIYsU9pJjY645ILV99gHsaUQsD7tl-0-f53be85ad825d5a5cb68af092f86d62b)
在方程式(2-87)中,以vi或wi项代替所有的ui,可以得到v或w的表达式。u的位移表达式和v及w的表达式相似,可以等同地写成以形状函数和未知节点位移表示的展开形式:
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/58_02.jpg?sign=1738863747-kjH9UZ3MMuzCyr2njNnsluW3CNtUUnn9-0-3bcf2b17f5a7a243a04ab23f22521dfb)
式中,形状函数为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/58_03.jpg?sign=1738863747-eFl4CmROeawRkhfLLcwKKyxQOz0buWIs-0-7edec27ac70e350f010f90566096c1be)
2. 单元刚度矩阵
将式(2-88)代入几何关系式(2-6),经过微分运算,可以得到单元内应变为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/58_04.jpg?sign=1738863747-mxrtMfVunoHUkd07GStESjHeipEgyeul-0-24ca3c29016d75b64faac7e6525560e2)
其中,应变矩阵 [B]是形状函数矩阵经微分算子矩阵作用的结果,[B]中任一个子矩阵 [Bi]为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/58_05.jpg?sign=1738863747-SM5fy70BqoETP5AvSu9gQFhCqDDJCeAw-0-2b005e4b915421dc99e2e05cb2e0d169)
式中,下标后的逗号表示相对后面的变量取微分,把式中的下标i分别替换为1、2、3、4,就可以得到子矩阵B1、B2、B3、B4。
将方程式(2-89)代入方程式(2-92),经过微分运算,B1表示为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/59_01.jpg?sign=1738863747-WtZ1dqylYEdIbt50BeYo9fU8PhFZzVlH-0-c1ff6a00697a2c0500ee3b3cdcb105f7)
同理得到B2、B3和B4为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/59_02.jpg?sign=1738863747-RuhRz1JHL3pBJYfoZSTrpi5ZzR2v35iZ-0-c898a99a9d152ea7bd05c9de38005a13)
[Bi]的每项元素都是由节点坐标决定的常数,因而四面体单元内各点的应变相同,即是常应变单元。由方程式(2-10)可知,单元内应力也是常数。一般受力情况下,构成三维体的有限个大小不同的四面体内的应力并不是常值,用常应力单元来代替它是近似的,单元间的应力是不连续的。只有当单元划分得很小时,单元内的应力才接近于常数。将三向应力中D的表达式及式(2-94)代入式(2-80)即可得到单元刚度矩阵:
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/59_03.jpg?sign=1738863747-JFFay1Z7mMwDQir4cSOrDhThLdXfl8JN-0-a9e637a5c3dea352feca25b450f77b76)
这里,Ve为单元体积,由于简单四面体单元为常应变单元,故积分有:
[K]e= [B]T[D][B]Ve
3. 不同节点数单元的位移函数
(1)8节点六面体单元8节点六面体单元如图2-18所示,每个节点沿其坐标方向x、y、z共有3个平移自由度。
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/59_04.jpg?sign=1738863747-82D3oWYFDZ7wSDOAbBnCDCsxMXwxeHVw-0-7d3f44b22d44bb63aac6eea14ee7885c)
图2-18 8节点六面体单元
以节点位移和形状函数表示的单元位移函数为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/60_01.jpg?sign=1738863747-pUTLov0WYrz5iU70KHyZS6ElwUIV3p4B-0-c7d2d21d112636c059eb2bec8a9da554)
(2)10节点四面体单元10节点四面体单元如图2-19所示,是在三维线性四面体单元基础上建的一种高阶单元。与4节点的四面体单元相比,10节点四面体单元更适于精度要求较高、边界为曲线时的模型。
单元的位移函数可表示为
u = uI(2S1-1)S1+uJ(2S2-1)S2+ uK(2S3-1)S3+uL(2S4-1)S4+
4×(uMS1S2+ uNS2S3+ uOS1S3+ uPS1S4+ uQS2S4+uRS3S4)
v = vI(2S1-1)S1+ vJ(2S2-1)S2+ vK(2S3-1)S3+ vL(2S4-1)S4+
4×(vMS1S2+ vNS2S3+ vOS1S3+ vPS1S4+ vQS2S4+ vRS3S4)
w = wI(2S1-1)S1+wJ(2S2-1)S2+ wK(2S3-1)S3+wL(2S4-1)S4+
4×(wMS1S2+wNS2S3+ wOS1S3+ wPS1S4+wQS2S4+ wRS3S4)
(3)20节点六面体单元20节点四面体单元如图2-20所示,它是在8节点六面体单元的基础上建立的一种高阶单元。与8节点的六面体单元相比,20节点四面体单元更适于精度要求高、边界为曲线模型。
单元的位移函数可表示为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/60_02.jpg?sign=1738863747-tluIrX1D2SKeZFlbZ07189gIztXhnd8z-0-5772941a1504337bd7119f26ebc70c82)
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/61_01.jpg?sign=1738863747-3XXh5Hrx2wSpCnG8iE3KoZpJ5ayRdFsd-0-fd4112633191285a67c44cb18253d7ab)
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/61_02.jpg?sign=1738863747-6X3rGOhr5chED4EuhXrZZm6hsnYnu2ef-0-e442dd7a2d9f3fc6038cc0728713e9d4)
图2-19 10节点四面体单元
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/61_03.jpg?sign=1738863747-a5D9rKlInesEf6AJenY7TSgiRhQjV9Be-0-879a33554ebc81641fc96bc582a0cbb3)
图2-20 20节点六面体单元
位移v和w分量的位移函数,与u向位移分量相似。
不同节点的单元刚度矩阵推导与4节点四面体推导类似,这里不再赘述。
4. 载荷分配
三维弹性体内如受有均布的体积力(如重力)作用,对于简单的四面体单元,则可以逐个单元计算出其整个单元的全部体积力,再平均分配到四个结点上,即每个节点分配到1/4的单元体积力。
如果单元的某个表面作用有均布的面积力(如气体压力),也可将此面上的全部面积力平均分配到相连的三个结点上,即每个结点分配到三角面上面积力总和的1/3。
如果体积力、面积力不是均匀的,应按做功相等的原则等效分配,即
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/61_04.jpg?sign=1738863747-3q40gO8Fp2A0RKX4kDQw6cDgVvg667ib-0-69cf60e152a2af5067a2ea3c98315aef)
其中,{QV}e、{QS}e为e单元内分布体积力和分布面积力分配到单元结点的载荷,[N]为形状函数矩阵,{q}和{p}分别为单位体积力和面积力,Ve、Se则为受有分布力的单元体积和面积。
2.5.4 弹性力学有限元求解方法
1. 求解基本流程
1)建立研究对象的近似模型;
2)将研究对象分割成有限数量的单元;
3)对每个单元提出一个近似解;
4)将所有单元按标准方法组合成一个与原有系统近似的系统;
5)用数值方法求解这个近似系统;
6)计算结果处理与结果验证。
2. 主要步骤
1)列出以位移为待解未知量的有限元的平衡方程。
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/62_01.jpg?sign=1738863747-MsfTaPoHjmby0GEGIw7o7zvNExi95yrQ-0-26b66f67b2a1221cc10c7586bdc9f1dd)
2)运用变分最小势能等有限元法求位移,由平衡方程得
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/62_02.jpg?sign=1738863747-UIVZuZxiAcU9FXb7qyTEtPoE8Pcyn9UW-0-66ded4f3afde65072ea40d9ed9073e30)
3)将本构方程代入求解。
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/62_03.jpg?sign=1738863747-uAbiaBWEGTGIqzpLD1W002662siX8jQV-0-0a4a6b0c7ecb57a8b6cc11ff8a7da221)