![高等数学习题全解与学习指导(下册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/68/33903068/b_33903068.jpg)
三、例题解析
例1 (考研真题:2006年数学一)点(2,1,0)到平面3x+4y+5z=0的距离d=__________.
解 本题直接利用点到平面距离公式
![010-05](https://epubservercos.yuewen.com/7CD0D8/18130706308305906/epubprivate/OEBPS/Images/010-05.jpg?sign=1738950138-0eSiXCWjIpkilsQvN7RwLzL4hUXMiIMX-0-fc71fe26a2b9f978935493fc92a13681)
进行计算即可. 其中(x0,y0,z0)为点的坐标,Ax+By+Cz+D=0为平面方程.
![010-06](https://epubservercos.yuewen.com/7CD0D8/18130706308305906/epubprivate/OEBPS/Images/010-06.jpg?sign=1738950138-jGZJU60Mso9M9QV2uRefmcpRWsLlBZto-0-01e7e2ccff0524a425028c76395b1863)
例2 已知向量a=3i-j+5k,b=2i+3j-7k,试求一向量x,使它与z轴垂直且满足x·a=5,x·b=-4.
解 设向量x=(x,y,z),由得x=(1,-2,0).
例3 已知a、b是两个模都为2的向量,且它们的夹角为若c1=a×b,c2=(c1×a)×b,…,cn+1=(cn×a)×b,求|cn|.
![010-16](https://epubservercos.yuewen.com/7CD0D8/18130706308305906/epubprivate/OEBPS/Images/010-16.jpg?sign=1738950138-t7BTRBigCdvxqFJkHlvd5UwoYQ1UtVjG-0-c6b04e63a1786704bf92b537b9996dc7)
例题解析
解 由向量积定义可知由c1⊥a,c1⊥b,c1×a与a,b共面,且c1×a⊥b,故
=
同理,
![010-13](https://epubservercos.yuewen.com/7CD0D8/18130706308305906/epubprivate/OEBPS/Images/010-13.jpg?sign=1738950138-Oz8WIVD9VHc2pbzNhweHD1FfFmdkBdZ2-0-7b4e331c008151d76a88502f762a2363)
依次类推
![010-15](https://epubservercos.yuewen.com/7CD0D8/18130706308305906/epubprivate/OEBPS/Images/010-15.jpg?sign=1738950138-XaFIdPEVMIQhObOHzLbCxtOW8wcfQs26-0-b911f5eebbe8a141b4d9d367e7b7df03)
例4 求通过三平面2x+y-z=2,x-3y+z+1=0和x+y+z-3=0的交点,且平行于平面x+y+2z=0的平面方程.
![011-01](https://epubservercos.yuewen.com/7CD0D8/18130706308305906/epubprivate/OEBPS/Images/011-01.jpg?sign=1738950138-OrqxGa6iPtXOQeaXi3BBNGjmRYlXEyTA-0-6a14b12a1dd502d55cea1af35b63a63b)
例题解析
解 所求平面平行于x+y+2z=0,所以该平面的法向量为(1,1,2).
三平面的交点为解得x=1,y=1,z=1.
所以所求平面为(x-1)+(y-1)+2(z-1)=0,即
x+y+2z-4=0.
例5 求直线在平面x+y+z=0上的投影直线方程.
![011-05](https://epubservercos.yuewen.com/7CD0D8/18130706308305906/epubprivate/OEBPS/Images/011-05.jpg?sign=1738950138-Bq7DG46YErjA9J43q4jPjH1AtOQnEEBy-0-915df69a1540b64eaa33f4ba6062536a)
例题解析
解 过已知直线作垂直于平面x+y+z=0的平面,称为投影平面,投影平面与已知平面的交线即为投影直线.
由平面束方程知,过直线的平面方程可设为
(x+y-z-1)+λ(y-x-z-1)=0,
即 (1-λ)x+(1+λ)y-(1+λ)z-(1+λ)=0.
上述平面与平面x+y+z=0垂直,所以
(1-λ)·1+(1+λ)·1-(1+λ)·1=0,
得到λ=1·于是投影平面为
2y-2z-2=0,
即 y-z-1=0.
所求投影直线方程为
![011-06](https://epubservercos.yuewen.com/7CD0D8/18130706308305906/epubprivate/OEBPS/Images/011-06.jpg?sign=1738950138-jIBab93zvgrmpme4BOB3Ce82ujnEHfI8-0-d4c64edec98f7e5a934851a23ea67f65)
例6 求直线l:在平面π:x-y+2z-1=0上的投影直线l0的方程,并求l0绕y轴旋转一周所成的曲面方程.
![011-10](https://epubservercos.yuewen.com/7CD0D8/18130706308305906/epubprivate/OEBPS/Images/011-10.jpg?sign=1738950138-1qaP5kscvanJIp76DWaq25Oza1Mp6QGz-0-7c1309221333be8eb6819adcf9aeb691)
例题解析
解 l的方程可写成所以过l的方程可写成
(x-y-1)+λ(y+z-1)=0,
即 x+(λ-1)y+λz-(1+λ)=0.
因它与已知平面垂直,即1-(λ-1)+2λ=0,解得
λ=-2,
所以过l与已知平面垂直的平面方程为x-3y-2z+1=0,故l0的方程为
![011-12](https://epubservercos.yuewen.com/7CD0D8/18130706308305906/epubprivate/OEBPS/Images/011-12.jpg?sign=1738950138-oECElvwyxM7LYxzUrMgkF4cK5qHl2osg-0-4aca2f58a866f53ab08abd1870cd262c)
于是l0绕y轴旋转一周所成的曲面方程为
![012-01](https://epubservercos.yuewen.com/7CD0D8/18130706308305906/epubprivate/OEBPS/Images/012-01.jpg?sign=1738950138-x19o1gEcqSgjDhTC9yG55PWhSYcujMLg-0-2fb6235e0b59e528e9a050fc14bb104c)
即 4x2-17y2+4z2+2y-1=0.