![预处理共轭梯度法识别桥梁动荷载分析与应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/618/37204618/b_37204618.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
2.2 第二识别法(IMII)
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_10.jpg?sign=1739376722-sngfJqs59EcAXi6MccVpoklcgb256oXn-0-db7321ccc7b6ee631da684ae1a338841)
图2.2.1 移动荷载识别简支梁模型
如图2.2.1所示,将桥梁考虑为一简支梁,其跨长为L,抗弯刚度为EI,单位长度质量为ρ,黏性比例阻尼为C,忽略剪切变形和转动惯量(即伯努利-欧拉梁)。假设一动荷载f(t)以速度c自梁左端支承处向右移动,则其振动微分方程:
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_11.jpg?sign=1739376722-cbWDoJKArgFi2oLKqqwMn0C8v5DBm9ro-0-27813cbf45848daae17d52bfaa148e82)
这里v(x,t)是梁在时刻t、位置x处的变形,δ(x-ct)是狄拉克函数。
式(2.2.1)的边界条件为
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_12.jpg?sign=1739376722-3udALg8Fsj5ncM8A0lJ3aCWmitvSmKXp-0-ad7e278ce96ca4131f5482378874b9b2)
和
基于模态叠加原理,假设梁的第n阶模态振型函数为则式(2.2.1)的解可表示为
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_15.jpg?sign=1739376722-hD0etrnIFn8Wkc83IcL0vw3jCVh9ynhf-0-58093dc0040aec3bdf679f4330c919cf)
矩阵形式为
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_16.jpg?sign=1739376722-oVfLQdoLGG4mlBAQCaTGJXIxZJCgFnWS-0-2ecab89a6967a52d703c2812a0ac17a2)
这里n为模态数,qn(t)(n=1,2,…,∞)是第n阶模态位移。将式(2.2.2)代入式(2.2.1),并在[0,L]内对x进行积分,利用边界条件和狄拉克函数特性,系统振动微分方程可用模态位移qn(t)表示为
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_17.jpg?sign=1739376722-f1lMYH5xF0yeLZSPpVY7kQoneZxC2mOV-0-d7a889999a9babe467e897ea6b31860b)
这里分别为桥梁第n阶模态频率、阻尼比和模态力。
如有k个荷载,且第k个荷载到第一个荷载的距离为则式(2.2.4)可写为
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_20.jpg?sign=1739376722-kE1CAG3GEnv1C4IFAOfTWKCahSGS1qwe-0-cc395699de84722c5c738da009a1e76c)
x1,x2,…,xl处的模态位移可通过式(2.2.1)求得
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_21.jpg?sign=1739376722-6KoL7UBRSHbtgizmj9mLc30dd3AYbHBq-0-b98cb4f03e1e150b0aba92559abcb911)
梁上x1,x2,…,xl处的速度可通过位移的一次微分求得
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_22.jpg?sign=1739376722-uW8G8r3lKtjnsHoGCIK37Q2e6YvG1nqM-0-171ff623400f01f61762b15a4e043dd9)
进一步,梁上x1,x2,…,xl处的加速度可通过位移的二次微分求得
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_23.jpg?sign=1739376722-GLov92TNAkq8igMGxMo58uGK6V1F3mr1-0-a49186511093793542049d860670521e)
类似地,相应位置的弯矩可利用关系式M=-EI(∂2v/∂x2)求得
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_24.jpg?sign=1739376722-jPzLxliISN7qlA5JiCupvPsp7TLxePu2-0-fa1d38fae52756e3c11f29a2add6ca7c)
若f1,f2,…,fk为已知常量移动荷载,忽略阻尼的影响,则式(2.2.1)的解为
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_25.jpg?sign=1739376722-xeN0YNKafBAY8Z8gFGyJpHLolfvrQCRl-0-3a43775d1292cb34cb2ac7406b680526)
这里若在一组常量移动荷载作用下,x1,x2,…,xl处的位移已知,则每个常量移动荷载可通过解下式方程求得
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_27.jpg?sign=1739376722-9IFPAaducH3IbaFYX7Svcm7rsJ6scYNa-0-f40bea313a56458b5256bd07daf3062e)
其矩阵形式可表示为
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_28.jpg?sign=1739376722-ts0EnIAOz3MUPokZE5KfcHSfrnWqS7mv-0-592eea96b167f85033f8fce84bc419a2)
这里
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_29.jpg?sign=1739376722-QDpGHzedQGqjGGH69h7ggWnj9nPm0fgT-0-7a73c684d5a28c230fbc0f452460007a)
若l≥k,即位移的测量点数大于或等于车轴轴数,f可用最小二乘法求解:
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_30.jpg?sign=1739376722-dDrFoHvxho4fEKY7h8RysGJptRTuejDh-0-4c4e04c7cae37abd6e6542aaca1dc22e)
若已知的不是桥梁位移响应,而是弯矩响应,则同样可以从弯矩响应求得式(2.2.1)的解:
![img](https://epubservercos.yuewen.com/7E8DE4/19720709701116506/epubprivate/OEBPS/Images/txt002_31.jpg?sign=1739376722-6OpfriSRIMWgPmkQ0xdawxd0OjC3jPLJ-0-03ab956b9afdd0acb119fee053f1c9a3)