优化驱动的设计方法
上QQ阅读APP看书,第一时间看更新

参考文献

[1] 钱令希.工程结构优化设计[M].北京:水利电力出版社,1983.

[2] SOBIESZCZANSKI-SOBIESKI J. Multidisciplinary design optimization: an emerging new engineering discipline. Advances in Structural Optimization [J]. Herskovits J. (Ed.), Kluwer Academic Publishers, 1995: 483-496.

[3] 肖蜜.多学科设计优化中近似模型与求解策略研究[D].武汉:华中科技大学,2012.

[4] GU X G, SUN G Y, LI G Y, et al. A comparative study on multiobjective reliable and robust optimization for crashworthiness design of vehicle structure [J]. Structural and Multidisciplinary Optimization, 2013, 48(3):669-684.

[5] LI L S, LIU J H, LIU S H. An efficient strategy for multidisciplinary reliability design and optimization based on CSSO and PMA in SORA framework [J]. Structural and Multidisciplinary Optimization, 2014, 49(2):239-252.

[6] LI G, MENG Z, HU H. An adaptive hybrid approach for reliability-based design optimization[J]. Structural and Multidisciplinary Optimization, 2015, 51(5):1051-1065.

[7] LI G, MENG Z, HU H. An adaptive hybrid approach for reliability-based design optimization[J]. Structural and Multidisciplinary Optimization, 2015, 51(5):1051-1065.

[8] 张义民.机械可靠性设计的内涵与递进[J].机械工程学报,2010,46(14):167-188.

[9] 郭书祥,吕震宙.基于非概率模型的结构可靠性优化设计[J].计算力学学报,2002,19(2):198-201.

[10] MICHELL A G M. The limit of economy of material in frame structures[J]. Philos Mag, 1904, 8(6):589-597.

[11] ROZVANY G I N. Structural design via optimality criteria [M]. Dordrecht, The Netherlands:Kluwer academic publishers. 1989.

[12] CHENG G D, GUO X. E-relaxed approach in structural topology optimization[J]. Struct Optimization, 1997, 13(4):258-266.

[13] 程耿东.关于桁架结构拓扑优化设计中的奇异最优解[J].大连理工大学学报,2000,40(2):379-383.

[14] BENDSØE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Comput Method Appl M, 1988, 71:197-224.

[15] ZHOU M, ROZVANY G I N. The COC algorithm, part Ⅱ:Topological, geometry and generalizedshape optimization[J]. Comput Method Appl M, 1991, 89(1-3):309-336.

[16] ROZVANY G I N, KIRSCH U, BENDS E M P. Layout optimization of structures[J]. Appl Mech Rev, 1995, 48(2):41-119.

[17] BENDS E M P, SIGMUND O. Material interpolation schemes in topology optimization [J]. Arch Appl Mech, 1999, 69(9-10):635-654.

[18] SIGMUND O. A 99 line topology optimization code written in Matlab [J]. Struct Multidiscip O, 2001, 21(2):120-127

[19] OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed algorithms based on Hamilton-Jacobi formulations [J]. J Comput Phys, 1988, 79 (1 ):12-49.

[20] SETHIAN J A, WIEGMANN A. Structural boundary design via level set and immersed interface methods[J]. J Comput Phys, 2000, 163(2):489-528.

[21] WANG M Y, WANG X M, GUO D M. A level set method for structural topology optimization[J]. Comput Method Appl M, 2003, 192:227-246.

[22] ALLAIRE G, JOUVE F, TOADER A M. Structural optimization using sensitivity analysis and a level-set method[J]. J Comput Phys, 2004, 194(1):363-393.

[23] XIE Y M, STEVEN G P. A simple evolutionary procedure for structural optimization [J]. Comput Struct, 1993, 49(5):885-896.

[24] GUO X, ZHANG W S, ZHONG W L. Doing topology optimization explicitly and geometrically:a new moving morphable components based framework[J]. J Appl Mech-T ASME, 2014, 81:081009-081012.

[25] ZHANG W S, YUAN J, ZHANG J, et al. A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model[J]. Struct. Multidiscip. Optim, 2016, 53:1243-1260.

[26] 隋允康,杨德庆,王备.多工况应力和位移约束下连续体结构拓扑优化[J].力学学报,2000,32(3):171-179.

[27] 隋允康,杨德庆,孙焕纯.统一骨架与连续体的结构拓扑优化的ICM理论与方法[J].计算力学学报,2000,17(1):28-33.

[28] 罗俊召.基于水平集方法的结构拓扑与形状优化技术及应用研究[D].武汉:华中科技大学,2008.

[29] LUO J Z, LUO Z, TONG L Y, et al. A semi-implicit level set method for structural shape and topology optimization[J]. J Comput Phys, 2008, 227(11):5561-5581.

[30] OSHER S, SANTOSA F. Level set methods for optimization problems involving geometry and constraints I. Frequencies of a two-density inhomogeneous drum [J]. J Comput Phys, 2001, 171(1):272-288.

[31] 庄春刚,熊振华,丁汉.基于水平集方法和von Mises应力的结构拓扑优化[J].中国机械工程,2006,15:1589-1594.

[32] XIA Q, WANG M Y, WANG S Y, et al. Semi-Lagrange method for level-set-based structural topology and shape optimization [J]. Struct Multidiscip O, 2006, 31 (6 ):419-429.

[33] 荣见华.一种改进的结构拓扑优化水平集方法[J].力学学报,2007,39(2):253-259.

[34] YAMADA T, IZUI K, NISHIWAKI S, et al. A topology optimization method based on the level set method incorporating a fictitious interface energy[J]. Comput Method Appl M, 2010, 199(45-48):2876-2891.

[35] VAN DIJK N P, LANGELAAR M, VAN KEULEN F. Explicit level-set-based topology optimization using an exact Heaviside function and consistent sensitivity analysis[J]. Int J Numer Meth Eng, 2012, 91(1):67-97.

[36] DUNNING P D, KIM H A. Introducing the sequential linear programming level-set method for topology optimization[J]. Struct Multidiscip O, 2015, 51:631-643.

[37] GUO X, ZHANG W, ZHONG W. Explicit feature control in structural topology optimization via level set method[J]. Comput Method Appl M, 2014, 272:354-378.

[38] VAN DIJK N P, MAUTE K, LANGELAAR M, et al. Level-set methods for structural topology optimization: a review[J]. Struct Multidiscip O, 2013, 48(3): 437-472.

[39] WANG S Y, WANG M Y. Radial basis functions and level set method for structural topology optimization[J]. Int J Numer Meth Eng, 2006, 65(12):2060-2090.

[40] HO H S, WANG M Y, ZHOU M D. Parametric structural optimization with dynamic knot RBFs and partition of unity method [J]. Struct Multidiscip O, 2012, 47 (3 ):353-365.

[41] LUO Z, WANG M Y, WANG S Y, et al. A level set-based parameterization method for structural shape and topology optimization[J]. Int J Numer Meth Eng, 2008, 76 (1):1-26.

[42] LUO Z, TONG L Y, KANG Z. A level set method for structural shape and topology optimization using radial basis functions[J]. Comput Struct, 2009, 87(7-8):425-434.

[43] LUO Z, TONG L Y, WANG M Y, et al. Shape and topology optimization of compliant mechanisms using a parameterization level set method[J]. J Comput Phys, 2007, 227(1):680-705.

[44] WANG Y Q, LUO Z, ZHANG N, et al. Topological shape optimization of microstructural metamaterials using a level set method[J]. Comp Mater Sci, 2014, 87:178-186.

[45] WU J L, LUO Z, LI H, et al. Level-set topology optimization for mechanical metamaterials under hybrid uncertainties [J]. Comput Method Appl M, 2017, 319:414-441.

[46] BUHMANN M D. Radial Basis Functions:Theory and Implementations, Cambridge Monographs on Applied and Computational Mathematics [M]. New York:Cambridge University Press, 2004.

[47] KLEIJNEN J P C. Statistical tools for simulation practitioners[M]. New York:Marcel Dekker, 1987.

[48] SOBIESZCZANSKI-SOBIESKI J, HAFTKA R T. Multidisciplinary aerospace design optimization: survey of recent developments [J]. Structural and Multidisciplinary Optimization, 1997, 14(1): 1-23.

[49] SIMPSON T W, Booker A J, Ghosh D, et al. Approximation methods in multidisciplinary analysis and optimization: a panel discussion [J]. Structural and Multidisciplinary Optimization, 2004, 27(5): 302-313.

[50] MYERS R H, MONTGOMERY D C. Response surface methodology:process and product optimization using designed experiments[M]. New York:Wiley, 1995.

[51] SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4):409-423.

[52] HARDY R L. Multiquadratic equations of topography and other irregular surfaces[J]. Journal of Geophysics Research, 1971, 76(8):1905-1915.

[53] JIN R, CHEN W, SIMPSON T W. Comparative studies of metamodelling techniques under multiple modelling criteria [J]. Structural and Multidisciplinary Optimization, 2001, 23(1):1-13.

[54] MATHERON G. Principles of geostatistics [J]. Economic Geology, 1963, 58 (8 ):1246-1266.

[55] XIAO M, GAO L, SHAO X Y, et al. A generalized collaborative optimization method and its combination with kriging metamodels for engineering design [J]. Journal of Engineering Design, 2012, 23(5):379-399.

[56] GAO L, XIAO M, SHAO X Y, et al. Analysis of gene expression programming for approximation in engineering design[J]. Structural and Multidisciplinary Optimization, 2012, 46(3):399-413.

[57] FRIEDMAN J H. Multivariate adaptive regression splines[J]. Ann Stat, 1991, 19(1):1-67.

[58] HAJELA P, BERKE L. Neural networks in structural analysis and design:an overview [J]. Computing Systems in Engineering, 1992, 3(1-4):525-538.

[59] CLARKE S M, GRIEBSCH J H, SIMPSON T W. Analysis of support vector regression for approximation of complex engineering analyses [J]. Journal of Mechanical Design, 2005, 127(6):1077-1087.

[60] TOROPOV V V. ALVAREZ L F. Approximation model building for design optimization using genetic programming methodology[C]. In:Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, Sept. 2-4, 1998, AIAA-1998-4769.

[61] ASHOUR A F, ALVAREZ L F, TOROPOV V V. Empirical modeling of shear strength of RC deep beams by genetic programming[J]. Computers and Structures, 2003, 81(5):331-338.

[62] GIUNTA A A, WATSON L T. A comparison of approximation modeling techniques:polynomial versus interpolating models[C]. In:Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, Sept. 2-4, 1998, AIAA-1998-4758.

[63] SIMPSON T W, MAUERY T M, KORTE J J, et al. Comparison of response surface and kriging models for multidisciplinary design optimization[C]. In:Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, Sept. 2-4, 1998, AIAA-1998-4755.

[64] SIMPSON T W, MAUERY T M, KORTE J J, et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization [J]. AIAA Journal, 2001, 39(12):2233-2241.

[65] MECKESHEIME R M, BARTON R R, SIMPSON T W, et al. Metamodeling of combined discrete/continuous responses[J]. AIAA Journal, 2001, 39(10):1950-1959.

[66] HUSSAIN M F, BARTON R R, JOSHI S B. Metamodeling:radial basis functions, versus polynomials [J]. European Journal of Operational Research, 2002, 138 (1 ):142-154.

[67] KRISHNAMURTHY T. Comparison of response surface construction methods for derivative estimation using moving least squares, kriging and radial basis functions[C]. In:Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and MaterialsConference, Austin, Texas, Apr. 18-21, 2005, AIAA- 2005-1821.

[68] KIM B S, LEE Y B, CHOI D H. Comparison study on the accuracy of metamodelingtechnique for non-convex functions[J]. Journal of Mechanical Science and Technology, 2009, 23(4):1175-1181.

[69] ZHAO D, XUE D Y. A comparative study of metamodeling methods considering sample quality merits[J]. Structural and Multidisciplinary Optimization, 2010, 42(6):923-938.

[70] 张健.飞机多学科设计优化中的近似方法研究[D].西安:西北工业大学,2006.

[71] GROSSMAN B, GURDAL Z, STRAUCH G J, et al. Integrated aerodynamic/structure design of a sailplane wing[J]. Journal of Aircraft, 1988, 25(9):855-860.

[72] HAFTKA R T. Simultaneous analysis and design[J]. AIAA Journal, 1985, 23 (7 ):1099-1103.

[73] HAFTKA R T, SOBIESZCZANSKI-SOBIESKI J, PADULA S L. On options for interdisciplinary analysis and design optimization [J]. Structural and Multidisciplinary Optimization, 1992, 4(2):65-74.

[74] SOBIESZCZANSKI-SOBIESKI J. Optimization by decomposition:a step from hierarchic to non-hierarchic systems[C]. In:Proceedings of the 2nd NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, Hampton, Virginia, NASA CP-3013, 1988, 51-78.

[75] KROO I M, ALTUS S, BRAUN R, et al. Multidisciplinary optimization methods for aircraft preliminary design [C]. In:Proceedings of 5th AIAA/USAF/NASA/ISSMO symposium on Multidisciplinary Analysis and Optimization, Panama City Beach, FL, Sept. 7-9, 1994, AIAA-1994-4325.

[76] SOBIESZCZANSKI-SOBIESKI J, AGTE J S, SANDUSKY R R. Bi-level integrated system synthesis [C]. In:Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, MO, Sept. 2-4, 1998, AIAA-1998-4916.

[77] MICHELENA N, KIM H M, PAPALAMBROS P Y. A system partitioning and optimization approach to target cascading [C]. In:Proceedings of the International Conference on Engineering Design, edited by Lindemann U., Birkhofer H., Meerkamm H. and Vajna S., Technical Univ. of Munich, Garching-Munich, 1999, 2:1109-1112.

[78] TAPPETA R V, RENAUD J E. Multi-objective collaborative optimization[J]. Journal of Mechanical Design, 1997, 119(3):403-411.

[79] TAPPETA R V. Interactive multi-objective optimization of engineering systems [D]. Dissertation, Department of Mechanical Engineering, University of Notre Dame, 1999.

[80] HUANG C H. Development of multi-objective concurrent subspace optimization and visualization method for multidisciplinary design[D]. New York:State University of New York at Buffalo, 2003.

[81] MCALLISTER C D, SIMPSON T W, HACKER K, et al. Integrating linear physical programming within collaborative optimization for multiobjective multidisciplinary design optimization[J]. Structural and Multidisciplinary Optimization, 2005, 29(3):178-189.

[82] 陈刚,徐敏,万自明,等.基于多目标多学科设计优化方法的再入弹道设计研究[J].宇航学报,2008,29(4):1210-1215.

[83] 李连升,刘继红,谢琦,等.基于物理规划的多学科多目标设计优化[J].计算机集成制造系统,2010,16(11):2392-2398.

[84] RAO S S. Game theory approach for multiobjective structural optimization [J]. Computers and Structures, 1987, 25(1):119-127.

[85] RAO S S, VENKAYYA V B, KHOT N S. Game theory approach for the integrated design of structures and controls[J].AIAA Journal, 1988, 26(4):463-469.

[86] LEWIS K, MISTREE F. Modeling interactions in multidisciplinary design:a game theoretic approach[J]. AIAA Journal, 1997, 35(8):1387-1392.

[87] XIAO A, ZENG S, ALLEN J K, et al. Collaborative multidisciplinary decision making using game theory and design capability indices [J]. Research in Engineering Design, 2005, 16(1-2):57-72.

[88] 张宏波,顾镭,徐有忠.基于博弈论的汽车耐撞性多目标优化设计[J].汽车工程,2008,30(7):553-556.

[89] 赵健冬,邱清盈,冯培恩.基于Nash均衡的多学科设计优化求解方法[J].农业机械学报,2008,39(1):126-129.

[90] 张明.结构可靠度分析——方法与程序[M].北京:科学出版社,2009.

[91] AOUES Y, CHATEAUNEUF A. Benchmark study of numerical methods for reliabilitybased design optimization[J]. Structure and Multidisciplinary Optimization, 2010, 41 (2):277-294.

[92] VALDEBENITO M A, SCHUЁLLER G I. A survey on approaches for reliability-based optimization[J]. Structure and Multidisciplinary Optimization, 2010, 42(5):645-663.

[93] FREUDENTHAL A M. The safety of structure [J]. Transactions of the American Society of Civil Engineers, 1947, 112(1):125-159.

[94] CORNELL C A. A probability-based structural code[J]. Journal of American Concrete Institute, 1969, 66(12):974-985.

[95] HASOFER A M, LIND N C. Exact and invariant second moment code format [J]. Journal of the Engineering Mecanics Division-ASCE, 1974, 100(1):111-121.

[96] RACKWITZ R, FLESSLER B. Structural reliability under combined random load sequences[J]. Computers & Structures, 1978, 9(5):489-494.

[97] ROSENBLATT M. Remarks on a multivariate transformation [J]. The Annals of Mathematical Statistics, 1952, 23 (3):470-472.

[98] SHINOZUKA M. Basic analysis of structural safety [J]. Journal of Structural Engineering, 1983, 109 (3):721-740.

[99] LIU P L, DER KIUREGHIAN A. Multivariate distribution models with prescribed marginals and covariances [J]. Probabilistic Engineering Mechanics, 1986, 1 (2 ):105-112.

[100] 吕震宙,宋述芳,李洪双,等.结构机构可靠性分析及可靠性灵敏度分析[M].北京:科学出版社,2009.

[101] DU X, CHEN W. Sequential optimization and reliability assessment method for efficient probabilistic design[J]. Journal of mechanical design, 2004, 126(2):225-233.

[102] WU Y T, SHIN Y, SUES R, et al. Safety-factor based approach for probability-based design optimization[C]. In 19th AIAA applied aerodynamics conference, 2001.

[103] CHENG G, XU L, JIANG L. A sequential approximate programming strategy for reliability-based structural optimization[J]. Computers & structures, 2006, 84 (21):1353-1367.

[104] ZOU T, MAHADEVAN S. A direct decoupling approach for efficient reliability-based design optimization[J]. Structural and Multidisciplinary Optimization, 2006, 31 (3):190-200.

[105] LI F, WU T, HU M, et al. An accurate penalty-based approach for reliability-based design optimization[J]. Research in Engineering Design, 2010. 21(2):87-98.

[106] CHEN Z, QIU H, GAO L, et al.An optimal shifting vector approach for efficient probabilistic design[J]. Structural and Multidisciplinary Optimization, 2013, 47 (6):905-920.

[107] HUANG Z L, JIANG C, ZHOU Y S, et al. An incremental shifting vector approach for reliability-based design optimization [J]. Structural and Multidisciplinary Optimization, 2016, 53(3):523-543.

[108] CHO T M, LEE B C. Reliability-based design optimization using convex linearization and sequential optimization and reliability assessment method [J]. Structural Safety, 2011, 33(1):42-50.

[109] DU X. Saddlepoint approximation for sequential optimization and reliability analysis[J]. Journal of Mechanical Design, 2008, 130(1):1011-1022.

[110] LIANG J, MOURELATOS Z P, TU J. A singleloop method for reliability-based design optimization[C]. ASME 2004 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, 2004:419-430.

[111] MANSOUR R, OLSSON M. Response surface single loop reliability-based design optimization with higher-order reliability assessment[J]. Structural and Multidisciplinary Optimization, 2016, 54(1):63-79.

[112] JEONG S B, PARK G J. Single loop single vector approach using the conjugate gradient in reliability based design optimization [J]. Structural and Multidisciplinary Optimization, 2017, 55(4):1329-1344.

[113] MENG Z, YANG D, ZHOU H, et al. Convergence control of single loop approach for reliability-based design optimization[J]. Structural and Multidisciplinary Optimization, 2018, 57(3):1079-1091.

[114] JIANG C, QIU H, GAO L, et al. An adaptive hybrid singleloop method for reliability based design optimization using iterative control strategy [J]. Structural and Multidisciplinary Optimization, 2017, 56(6):1271-1286.

[115] SHAN S, WANG G G. Reliable design space and complete singleloop reliability-based design optimization [J]. Reliability Engineering & System Safety, 2008, 93 (8 ):1218-1230.

[116] JIANG C, QIU H, LI X, et al. Iterative reliable design space approach for efficient reliability-based design optimization[J]. Engineering with Computers, 2019:1-19.

[117] HURTADO J E. An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory[J]. Structural Safety, 2004, 26(3):271-293.

[118] BASUDHAR A, MISSOUM S, SANCHEZ A H. Limit state function identification using support vector machines for discontinuous responses and disjoint failure domains [J]. Probabilistic Engineering Mechanics, 2008, 23(1):1-11.

[119] BASUDHAR A, MISSOUM S. Adaptive explicit decision functions for probabilistic design and optimizationusing support vector machines [J]. Computers & Structures, 2008, 86(19-20):1904-1917.

[120] BASUDHAR A, MISSOUM S. An improved adaptive sampling scheme for the construction of explicit boundaries[J]. Structural and Multidisciplinary Optimization, 2010, 42(4):517-529.

[121] JIANG P, MISSOUM S, CHEN Z. Optimal SVM parameter selection for non-separable and unbalanced datasets [J]. Structural and Multidisciplinary Optimization, 2014, 50(4):523-535.

[122] SONG H, CHOI K K, LEE I, et al. Adaptive virtual support vector machine for reliability analysis of high-dimensional problems [J]. Structural and Multidisciplinary Optimization, 2013, 47(4):479-491.

[123] ZHAO L, CHOI K K, LEE I. Metamodeling method using dynamic kriging for design optimization[J]. AIAA journal, 2011, 49(9):2034-2046.

[124] LEE I, CHOI K K, ZHAO L. Sampling-based RBDO using the stochastic sensitivity analysis and Dynamic Kriging method[J]. Structural and Multidisciplinary Optimization, 2011, 44(3):299-317.

[125] CHO H, BAE S, CHOI K K, et al. An efficient variable screening method for effective surrogate models for reliability-based design optimization [J]. Structural and Multidisciplinary Optimization, 2014, 50(5):717-738.

[126] CHEN Z, QIU H, GAO L, et al. A local adaptive sampling method for reliability-based design optimization using Kriging model [J]. Structural and Multidisciplinary Optimization, 2014, 49(3):401-416.

[127] LI X, QIU H, CHEN Z, et al. A local Kriging approximation method using MPP for reliability-based design optimization[J]. Computers & Structures, 2016, 162:102-115.

[128] LI X, QIU H, JIANG Z, et al. A VF-SLP framework using least squares hybrid scaling for RBDO[J]. Structural and Multidisciplinary Optimization, 2017, 55(5):1629-1640.