![车用同步电机噪声与振动](https://wfqqreader-1252317822.image.myqcloud.com/cover/853/42637853/b_42637853.jpg)
2.2 连续系统的振动
2.2.1 薄板的振动
弹性薄板是二维弹性体,可以承受弯矩。设薄板的中性面在变形前为平面。建立(x,y,z)坐标系,(x,y)坐标面与变形前的中性面重合,z轴垂直向下(见图2.1)。薄板受到沿z轴的分布力f(x,y,t)作用。在中性面上任意点处取长宽分别为dx和dy的矩形微元体。将与x轴和y轴正交的横截面分别记为Sx和Sy,假设弯曲变形后截面仍保持平面。将板的中性面法线视为截面Sx和Sy的交线,则弯曲变形后必保持直线。弯曲变形后,中性面上各点产生沿z轴的挠度w(x,y,t),且引起截面Sx和Sy的偏转。设截面Sx绕y轴的偏角为θx,截面Sy绕x轴的偏角为θy。在小挠度的前提下,偏角θx和θy可用挠度w(x,y,t)对x轴和y轴的变化率代替:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/46_07.jpg?sign=1739280322-dG6CsAVcXsCPDq7iWspToKOEShfrVZbK-0-67e19513e0258962dc8d3418f5b1df82)
图2.1 弹性薄板
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/46_08.jpg?sign=1739280322-1EwTvPIMJCL6OLDBKXwex7AIkoB8XprG-0-97d9d89a7fb67110e010f92dfc4de83a)
则截面上坐标为z的任意点产生沿x轴的弹性位移u和沿y轴的弹性位移v分别为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/46_09.jpg?sign=1739280322-ORKv54NMcsOl1tn2v3Xh4sJAkyBUyfs6-0-3aaecacad22741e75800ed00fbe64152)
位移u和v对x轴和y轴的变化率导致微元体沿x轴和y轴的正应变εx和εy:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_01.jpg?sign=1739280322-QzjCCKNh0aFeFOIzEWQNN3n0XKGX3rIU-0-f8be87112668efb4ee9404eac41cef15)
除正应变以外,位移u对y轴的变化率和位移v对x轴的变化率导致微元体在(x,y)平面内的切应变γxy为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_02.jpg?sign=1739280322-7PMQ1WVTqTB2KwqiYhryfvNk2uEMwmy9-0-e8a47db574bb52c2d65968f698fb8b7d)
代入广义胡克定律计算正应力和切应力:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_03.jpg?sign=1739280322-PnPPcMblhWvbFC0RMKxpWPCFLvIUx8i5-0-fa16a81e05510348db9af0ae19979f4d)
σx、σy、τxy在截面Sx和Sy上的积分为零。设、
分别为截面Sx和Sy上沿z轴单位长度的剪力,板的厚度为h,密度为ρ。根据达朗贝尔原理,考虑微元体的惯性力,列出微元体沿z方向的力平衡方程(见图2.2):
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_06.jpg?sign=1739280322-2iboBo2cFylmDRVRGOJr6zXkWAm0aui4-0-754d0d23bcb67747e7e69d1be7615514)
计算截面Sx的单位长度上作用的绕y轴的弯矩My和绕x轴的转矩Myx,以及截面Sy的单位长度上作用的绕x轴的弯矩Mx和绕y轴的转矩Mxy,得到
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_07.jpg?sign=1739280322-d3Bce8Xei7UInPtJ3I3R0FfFQueQYtKp-0-be7262088d87b232830d44ecdebf2984)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_08.jpg?sign=1739280322-TzByna6ZhxN7q6m131bJu4z09vTI8emU-0-b1a596edf471beb3e4c37add2d2d8407)
图2.2 微元体沿z方向的力平衡
式中,D为板的抗弯刚度:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_09.jpg?sign=1739280322-doyYCwqoc5p4Vy1NeF74zmQXuyFYiSGZ-0-2b5919bce5a2da346852f557408614e1)
忽略截面转动的惯性力矩,列写微元体绕y轴的力矩平衡条件(见图2.3):
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_10.jpg?sign=1739280322-DQwy2NvF25r6XM8vvq0NG27GtMW2ouqg-0-c825baa762bdf2afa8bb2043c10f4064)
略去dx、dy的三次项,得到
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_11.jpg?sign=1739280322-L04NC8CTIGQ7ZyM0dZxPobJMpxHQMXsf-0-4113ad40667d1f79ce77294ae804b737)
与此类似,从微元体绕x轴的力矩平衡条件导出(见图2.4)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_12.jpg?sign=1739280322-Mkh1ADhru6ahgoLJZVLQAyWZt9xCCqwb-0-04402ea2b7457884d4d9f5fb81f203a6)
将式(2-62)、式(2-63)代入式(2-58),得到
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/47_13.jpg?sign=1739280322-ZLv50NTI6cLQ2Hgc0mA9MIRcCubDLUfp-0-ef7198d465da7a0bdd11c188ac5b1df8)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_01.jpg?sign=1739280322-dBCi8qoiKHp1GVEw4eZZDL2XN1whGOlB-0-350c87b370b656f0e802faa27dd8e07a)
图2.3 微元体绕y轴的力矩平衡
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_02.jpg?sign=1739280322-6tOxgUA24AbEjYX5UYhnoy4MD9FgCOcv-0-21f5be3c5d016eff4425c66a1704f9dd)
图2.4 微元体绕x轴的力矩平衡
将式(2-59)代入后,利用二重拉普拉斯算子得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_03.jpg?sign=1739280322-xKRTlAITYHcjIBy7NQRj4tvYBHGug01U-0-da265bf858a5f4344a77cc68b792b059)
导出薄板的振动方程为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_04.jpg?sign=1739280322-w7uu1D0O8knHn5okjrJV8xKpSa87bmmY-0-b8d14c84f9ef6b5ecacac24ffba7531d)
2.2.2 圆环的振动
本节研究的圆环,假定为等截面的而且截面尺寸和环中心线半径相比要小得多,同时截面在振动过程中仍然保持平面。选择圆柱坐标系Rθz,圆环在振动中除了扩张振动之外,还有扭转振动,如图2.5所示。设其绕轴线的转角为ψ,于是截面上各点有三个方向的位移,设其沿R、θ、z方向的位移为u、v、w。现以轴线(截面中心线)上各点的位移为u、v、w,绕轴线的转角为ψ,略去高阶微量,则环上任意点a(R,θ,z)的位移将为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_05.jpg?sign=1739280322-loLsA4GpXpysqpg97Lx3IXNeCRhXrh8m-0-24276970bf89b912719df16b7170c5a0)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/48_06.jpg?sign=1739280322-kxdYgVgaDjZJ2uwIMauUYDspKjhmhc6Z-0-61dd3891f538dd9f6482b1b962af583a)
图2.5 圆环的振动
根据小变形情况下圆柱坐标系中的柯西方程,截面上各点应变和应力分别为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_01.jpg?sign=1739280322-MSqVGazI3Wv7TRAqqCiwGQBxmra5LXy4-0-59a5f4051806b5a406de43e793164d29)
上述关于剪切变形只限于平面假设,因此只能适用于圆截面的圆环,以下只讨论圆截面的圆环。圆环的势能表达式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_02.jpg?sign=1739280322-66Dk4Mj1oqFtwC4cacYb2fe2Rvsuciil-0-889e3c595d5c51be5785c5422cb7a86b)
式中,A为圆环截面积;Jz、Jr分别为截面对于通过形心而分别平行于z轴和R轴的轴线的惯性矩;JP为圆截面的极惯性矩。
动能表达式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_03.jpg?sign=1739280322-ShCMpCvMPy7uuhjIsjZAr3NhCHTqkOam-0-029b39e63a510d2fcc69e8658db7f087)
式中,、
、
分别为圆环上任意一点a(R,θ,z)在u、v、w三个方向上的速度,且
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_07.jpg?sign=1739280322-EumdfCegoeCpIVvytBbPvYoKSowtXIJf-0-c64e28f2b233dcd952bcfc90826ea1ab)
在动能和势能表达式中可以发现,u、v和w、ψ之间不发生耦合,因此可将圆环振动分解为环面内的振动和环面外的振动。
1.环面内的振动
变分方程为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_08.jpg?sign=1739280322-jxFq9gDsgzkzndMClUzuCgwotvbRwqya-0-19677b03c5ba90fd022e4361440de81b)
讨论环面内的振动时,在动能和势能表达式中令w=ψ=0,然后将其代入变分方程式(2-72),经过变分运算,并考虑δu、δv的任意性,略去小量得到
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_09.jpg?sign=1739280322-5Fa5hvqCNHFyItGoMqe1vxVCBls3go9K-0-3bf8c9745e82ebb6d32020e16dde42f6)
此方程包括圆环在环面内的伸缩和弯曲振动,由于Jz=Ar2,要使弯曲振动的有关项和伸缩振动的有关项同量级,则由εθ=+
,可得u=-
。根据这个关系,假设
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/49_13.jpg?sign=1739280322-vKYOhcKjE2upQgBrS74Ob95bHypmiweR-0-827c2e930dad63f00c1ee932f7a333c8)
将式(2-74)代入式(2-73),可求得圆环在环平面内弯曲振动频率为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_01.jpg?sign=1739280322-WThr6LtPXIBEhZnvBn1bTRXxxPJf4SR9-0-5ec6b37ebc037d46a4b7c0d8fd07c4b2)
当n=0时,p0=0,u0=0,v0=B0,是圆环的刚体转动。
当n=1时,p1=0,u=-A1cosθ+B1sinθ,v=A1sinθ+B1cosθ,是圆环的刚体平动。
考虑到Jz=Ar2,将式(2-73)进一步简化,便得到圆环的伸缩振动方程:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_02.jpg?sign=1739280322-GbqxBnNP6pFQ41HLNipqZvkRx2L9kHR3-0-b17f1740cbad654cd88d74aa02dbed6b)
此时设圆环做波数为n的伸缩振动的位移函数为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_03.jpg?sign=1739280322-AwppnwUZ0xzu3vW5MHnb7kAQbAXHsFAx-0-a5a09479248f16da3d3abd1f6f53321a)
将式(2-77)代入式(2-76)可解得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_04.jpg?sign=1739280322-F64ddmjHyS9KrHgAaXQhaQoaqKH30zD8-0-a7673392e072c2c29cd767d87c3f6e07)
当n=0时,圆环切向位移为零,只做均匀的径向振动。
2.圆环的扭转振动和面外弯曲振动
在动能及势能表达式中令u=v=0,然后代入变分方程式(2-72)中,经过变分运算,并考虑δw和δψ,得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_05.jpg?sign=1739280322-KfauOCncndDADHHe9O1WYDsclg4GBEU5-0-fcdda4f5dbe92cc9ae08b3b46b86cc4c)
以上两个方程彼此之间发生耦合,即面内弯曲振动与扭转振动是互相耦合的,现设其振动时的位移函数为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_06.jpg?sign=1739280322-ZCCEpaRvBPrV7jbhy9eIrY8y3KzcPSwQ-0-cf2b2d29bb08929c4e77b90aa0bae1ce)
将式(2-80)代入式(2-79),并考虑到Jz=Ar2,得到频率方程为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_07.jpg?sign=1739280322-HSBZvxWyE3f4l4uhtqsU6qsh8kABaeb0-0-4d721c97d3b90c43432d55131b852b52)
所以有
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_08.jpg?sign=1739280322-4vh5rB9SjIMWka9GQ7mjSZ2RVKDFb3l2-0-5205baf92bb3341a919388d4459dc435)
式(2-82)中,由于根号中的后一项比前一项小得多,所以根号取正值或取负值时,频率值的差值较大。频率中较高的一类是常说的扭转振动,低的一类是弯曲振动。对于扭转振动,其频率值为根号取正值,即
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/50_09.jpg?sign=1739280322-PdNPzLTyAuOVqew0trFJ4ka3G7wfgWmT-0-ccd475321f4f3fd6459c1a465f829dd1)
当n=0时,有
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_01.jpg?sign=1739280322-n4Ds688zrLNlhtp9YaH0i5lkj6LT8Rcm-0-150c0ac7705946ec58b2f117e2cb2e01)
相应的位移函数为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_02.jpg?sign=1739280322-FlcfkU8e41EqmLDaNqMNYGq32Phstll2-0-58f49a47e690ba09551c6f57668fe83e)
和伸缩振动频率相比,扭转振动的基频低于伸缩振动的基频。
对于弯曲振动,即根号前取负号,可得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_03.jpg?sign=1739280322-oXha3cASWNW7GmLDYSw4EkWHwudKHu2b-0-d7f2b45074b1938ba32226bf0a10e4e5)
式中,ν为泊松系数。
与前面的讨论比较可以看出,面内弯曲振动的频率和面外弯曲振动的频率是相当接近的。
2.2.3 圆柱壳体的振动
对于半径为R、长为L的圆柱壳体(见图2.6),取图中的圆柱坐标系(x,θ,z),其中x、θ、z分别表示轴向、切向和径向,R、h、L分别为圆柱壳体的中面半径、轴向长度和厚度,u、v、w分别为轴向、切向和径向的位移。
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_04.jpg?sign=1739280322-1KDsvtltqyVMnOquemGeCRPG6jVCVyJb-0-1962485c1d706d993d7f66b863e2e11a)
图2.6 圆柱壳体的圆柱坐标
若壳体中曲面上的一点P的轴向、切向、法向位移分别为u、v、w,则中面应变与中面位移之间的关系式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_05.jpg?sign=1739280322-ExWkVThbrdPgtnvDI7vLzM2MeGTpLnpH-0-1c43aa543be572d795b9c3d0dd784365)
式中,ε为薄膜应变分量;χ为弯曲应变分量。
内力与圆柱壳中面应变的关系式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/51_06.jpg?sign=1739280322-78hlUcCbyPicnelxA8yZfwi5bbvDoDR9-0-9e8a11c0d405e3d1c275f4b448bb0c05)
式中,N为单位长度薄膜力;M为单位长度力矩。
薄膜刚度K和弯曲刚度D分别为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_01.jpg?sign=1739280322-ILJSElGMKO7ObaehnaTPaQOoucNc8NWv-0-867251d2e924f3ea903d22dc883fa429)
圆柱壳体的一般性内力动平衡方程为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_02.jpg?sign=1739280322-XsqkLvzQfBYQjOBE6lAmnPirq2hzAr5w-0-43bf422cd6e8b8ee78430038106db67f)
式中,剪力表达式为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_03.jpg?sign=1739280322-lSitKLqvhLstOOvmRYctAbiNH7ktt5u1-0-b83795ca97a22212d1f9a2998e995d13)
将式(2-87)代入式(2-88),再代入式(2-90),即可得剪力以中面位移分量表示的圆柱壳体的基本微分方程组:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_04.jpg?sign=1739280322-pAxFmXyjt02VX8kJorSJ1tSMyKXBHG7s-0-77e796a69351b1d35df774aa53937135)
式中
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_05.jpg?sign=1739280322-iuM5EwubZyqtt4kXM5dnfAczNqu7hqSz-0-770d7eecb0c15b55f56828dc169c36a1)
在电机的振动噪声分析中常见的是两端简支的有限长圆柱壳体(见图2.7)的振动,即圆柱壳体端部边界各点的法向和切向移动是约束的,转动和轴向移动是自由的。对于两端简支的圆柱壳体,其振型边界条件为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_06.jpg?sign=1739280322-xBpn7YrJcKNZdTD21iZLq3Gcsug4ppFH-0-201c6e4d82f44b0e600c30f2c1a1a91f)
式中,凡带*者均为响应力学量的振型。
设满足全部边界条件[式(2-94)]的圆柱壳体非轴对称振动的位移振型解为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_07.jpg?sign=1739280322-L5g5JnE3kSBJIDuYiJUA0cuOlQlqFLtb-0-af248901df23f6fa616629095283e874)
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/52_08.jpg?sign=1739280322-mAaMdTHbMfUfiWLffIBAVYU1d7r1UR50-0-5296429361983a3c49cb93011634a578)
图2.7 两端简支的圆柱壳体
由于自由振动的圆柱壳体轴向、切向及径向的面压力均为零,即qx=qθ=qz=0,将上述位移振型解代入圆柱壳体的一般性内力动平衡方程,可得如下齐次线性代数方程组:
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_01.jpg?sign=1739280322-Jd1wfwsljUx7t4umiaV1WwPorxGpywyn-0-2d56c0d5f409eeab58bd5816eadcc969)
式中
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_02.jpg?sign=1739280322-1UvjygjVrnmAZvyArxbs9aMHj5m2mrCM-0-33ba955aee0f23851430c7e1b9e403bf)
为求得振型的非零解,必有式(2-96)的系数行列式为零,展开可得
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_03.jpg?sign=1739280322-rMwrIUFjH7iCnxJKD4GkpupFSoFhpg2e-0-e1717571be912b05d6f16605514dee66)
式中
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_04.jpg?sign=1739280322-onVrV0aKK2T7nxP7jkBrxOQVBGqOFm5G-0-8b7f89fd9ce0b9e5a0e8bfe644af94cf)
式(2-98)即为两端简支圆柱壳体的频率方程,求得频率系数Ω2的三个根为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_05.jpg?sign=1739280322-HFOxtG5GNOEkojhJN2tXh8sZbofzhOpD-0-9ccc288644bb2906cb43eca828df3a93)
式中
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_06.jpg?sign=1739280322-xrqNk3itq49Q0Cvq0748F39JXkonIWjP-0-68f3fd7582812e3623130a65c5254bd6)
从而解得固有频率为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/53_07.jpg?sign=1739280322-iAzeAYryBUPFqACdqJsUqpyTIou3lHEC-0-bc4c7d0c3bc40456edfc13bc14018b58)
式中,ωi,mn的下标m、n代表响应振型沿轴向有m个半波,沿周向有n个半波。对应一组(m,n),有三个频率(i=1,2,3),代表U、V、W间比值不同,但均有m个轴向半波和n个周向半波。三个频率中最低一个相应于振型中W为主,其他两个频率值要高过一个量级,相应于U、V为主。对应每一个ωi,mn或Ωi,mn,从式(2-96)中可求得一组振型比,例如取c=1,则由前两个方程可解出
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/54_01.jpg?sign=1739280322-P86836FhrTpvHklBPByoZAY56v19Hr93-0-91e718b7a44c0f05c8d318a725a6525f)
因此与ωi,mn相应的位移振型为
![](https://epubservercos.yuewen.com/F8E57B/22139298909128306/epubprivate/OEBPS/Images/54_02.jpg?sign=1739280322-iTZoaywcwxayBt6bRRULWTpcw5jhCtDD-0-3a9efe3c12c89f87a27cbdf6abf1d71d)