![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第四届全国大学生数学竞赛预赛(2012年非数学类)
试题
一、解答下列各题(本题共5个小题,每题6分,共30分)(要求写出重要步骤)
1.求极限.
2.求通过直线L:的两个相互垂直的平面π1和π2,使其中一个平面过点(4,-3,1).
3.已知函数z=u(x,y)eax+by,且,确定常数a和b,使函数z=z(x,y)满足方程
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0026_0004.jpg?sign=1739377713-2H4jQlljH1V3Pn5zaBIABvZyxxDhVsti-0-e39f4bb94e3e59fa5718c70382293623)
4.设函数u=u(x)连续可微,u(2)=1,且在右半平面与路径无关,求u(x).
5.求极限.
二、(10分)计算.
三、(10分)求方程的近似解,精确到0.001.
四、(12分)设函数y=f(x)的二阶导数连续,且f″(x)>0,f(0)=0,f′(0)=0,求,其中u是曲线y=f(x)在点P(x,f(x))处的切线在x轴上的截距.
五、(12分)求最小的实数C,使得满足的连续的函数f(x)都有
.
六、(12分)设F(x)为连续函数,t>0.区域Ω是由抛物线z=x2+y2和球面x2+y2+z2=t2(t>0)所围起来的部分.定义三重积分
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0026_0012.jpg?sign=1739377713-IH0YMhopcHrLx1fG9U94pmVexwR9haFz-0-b2cddd178dbf75663c1b44333debbe7f)
求F(t)的导数F′(t).
七、(14分)设与
为正项级数.
(1)若,则
收敛;
(2)若,且
发散,则
发散.
参考答案
一、1.解 因为,而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0005.jpg?sign=1739377713-OmBVYRcxGZMTR4TVDtj1aef9tzYAhvhN-0-8a94f4ad8ea44cc7c52fd5d89f25838a)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0006.jpg?sign=1739377713-6l9pJGo0lCKcnmxCHPW8ysNQbSP9vguU-0-e4d5dc5e7003b31bd65e450fd3c012d6)
即
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0007.jpg?sign=1739377713-BcYoBwjqFRiLpzjGUEs43isefpfitywQ-0-0752f567f041fc8af18aa11b9a8a88cc)
2.解 过直线L的平面束为
λ(2x+y-3z+2)+μ(5x+5y-4z+3)=0,
即
(2λ+5μ)x+(λ+5μ)y-(3λ+4μ)z+(2λ+3μ)=0,
若平面π1过点(4,-3,1),代入得λ+μ=0,即μ=-λ,从而π1的方程为
3x+4y-z+1=0,
若平面束中的平面π2与π1垂直,则
3(2λ+5μ)+4(λ+5μ)+1(3λ+4μ)=0.
解得λ=-3μ,从而平面π2的方程为x-2y-5z+3=0.
3.解
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0008.jpg?sign=1739377713-PenTQfBb2VamcrQBCT7VHd6VaffITdAS-0-6991dc9e46ddc83ba8547e79335e5b5d)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0009.jpg?sign=1739377713-PB0scCsjyT0KjPcCGeuYu8oJQGNnZ8hb-0-06ad257247c5007d107eed22aefeaf1a)
若使,只有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0011.jpg?sign=1739377713-RyN8WXWscZRFnrG8MLtMMFafClOVDcJO-0-1c5c4bcd8663ff479f6999ccceac8149)
即a=b=1.
4.解 由得(x+4u3)u′=u,即
,方程通解为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0014.jpg?sign=1739377713-nKCrlpcf0LASWWhZhEbTGRxkRBzTbFD0-0-4ef1c1634b9873602c3eb636087bfd20)
由u(2)=1得C=0,故.
5.解 因为当x>1时,
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0027_0016.jpg?sign=1739377713-ploklIndX5BikexKERIG80ij1RmcIlB5-0-80815a32b6bdcd8a9f9d75048d0a759c)
所以.
二、解 由于
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0001.jpg?sign=1739377713-YBarh7ZEr69TGJDsU0FoCqEQi8jVwaHP-0-4a855afea1a7f3a42c2fc882583e386c)
应用分部积分法
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0002.jpg?sign=1739377713-OMLctk2iOdB36LG4Iq7wRMzeh8NUqbWf-0-0ba9fdeb6cfce4d6554c25879e680139)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0003.jpg?sign=1739377713-uTdQAgUeL7VDFQxCbombyNGFPeg0yZeK-0-5545c4722f6d112990e582d21e3c8efe)
当nπ≤x<(n+1)π时,
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0004.jpg?sign=1739377713-ev98lh9Gq27q72ujuF1dydcySyonq5nY-0-8122ec8d6d0a589d2bfcb953c1e46c84)
令n→∞,由夹逼准则,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0005.jpg?sign=1739377713-DLKfLmDi51C9WHIE9oNmB0tOsFvnVdJj-0-4cd2a5e375c60bbb1838aaca77a0e2c9)
注 如果最后不用夹逼准则,而用
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0006.jpg?sign=1739377713-O0K6FPuYMXhnN2uolBMGhAvXsoSz67hp-0-f5306dd0dfb185bfa5b991575229b776)
需先说明收敛.
三、解 由泰勒公式有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0008.jpg?sign=1739377713-exf46V3DXg9qZm5VU4pN7HiwyGKnFDdw-0-c879b4403b1d2be23e41f2a9a27cae27)
令得
,代入原方程得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0011.jpg?sign=1739377713-3kO73CODldJrTSxClrQdX735EmqqjVDb-0-e85aaa136f42d89e78f47c1e64935158)
由此知x>500,,
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0013.jpg?sign=1739377713-oYdXID2cl0v483a8Uw08vC3Iy40wVKg1-0-2b60255659868afc5c6db6448d860a0e)
所以,x=501即为满足题设条件的解.
四、解 曲线y=f(x)在点p(x,f(x))处的切线方程为
Y-f(x)=f′(x)(X-x),
令Y=0,则有,由此
,且有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0016.jpg?sign=1739377713-bzCVZ4ZzzRw60nQPInXwcCjMcSTzfKWv-0-14dbb8fd46319b864f161237970b1090)
由f(x)在x=0处的二阶泰勒公式
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0017.jpg?sign=1739377713-8lzvHGf0AcUJD4WBbgokzHTqXz7QMqKE-0-b58849b5d59264584c2e7b5394eb6475)
得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0028_0018.jpg?sign=1739377713-5xmEtUhIeZ9Zav2TfXtjWT1obEz7PjLG-0-afab38238f924f270f9d4c8da1533257)
故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0001.jpg?sign=1739377713-C50cr1hOpQOpLLWz81UkfrNaoGPDJe8i-0-5067bbee407ab6ded08a33dcd906e4cb)
五、解 由于.
另一方面,取fn(x)=(n+1)xn,则,而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0004.jpg?sign=1739377713-NBl4rXY7bwU9iHhcwroC7kncM9EYp6aK-0-f44e34db65553969e2862940197190ec)
因此最小的实数C=2.
六、解法1 记,则Ω在xy面上的投影为x2+y2≤g.
在曲线上任取一点(x,y,z),则原点到该点的射线和z轴的夹角为
.取Δt>0,则θt>θt+Δt.对于固定的t>0,考虑积分差F(t+Δt)-F(t),这是一个在厚度为Δt的球壳上的积分.原点到球壳边缘上的点的射线和z轴夹角在θt+Δt和θt之间.我们使用球坐标变换来做这个积分,由积分的连续性可知,存在α=α(Δt),θt+Δt≤α≤θt,使得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0009.jpg?sign=1739377713-gtyREqm44WVyWLntXNr9eO3DuwK0EZ9b-0-e4cf829874f23486ff00300d56290a84)
这样就有.而当Δt→0+时
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0011.jpg?sign=1739377713-EGThvP9ElzmQyNIzS1dtmPDom8SuRaGt-0-9a820cdaa3b529c2a207cf2ee28ff66a)
故F(t)的右导数为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0012.jpg?sign=1739377713-KnH3GJM928Jv6IgZEqDGsZjGWhMjicfT-0-a6f868f88f1380c460d05ab47eb48300)
当Δt<0时,考虑F(t)-F(t+Δt)可以得到同样的左导数.因此
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0013.jpg?sign=1739377713-gfEkM2tzB3UO55J0orOQ3ZpH0A2HVuwi-0-afbee0ab2c2b33e27708906af9b2b9c0)
解法2 令
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0014.jpg?sign=1739377713-BmhBI4lc3DJNUGmwsGZyPcFBNcJBj8XE-0-a4f7b1d6018a2c8c55c98d86038c188d)
其中a满足a2+a4=t2,即.故有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0016.jpg?sign=1739377713-xk1fEyaCc4h9M02g4hoIXYHbplVOyexe-0-3b9f18fcc54c82557427c3d10ebee0b2)
从而有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0017.jpg?sign=1739377713-FaafB8D2XBSo8F8wtusKolhi7cJWRMWN-0-1c5f57a7e9e24efac9daf3447b73bc8e)
注意到,第一个积分为0,我们得到
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0029_0019.jpg?sign=1739377713-CFf53waKXkDkCx5j2j26AysLSLrZhTyl-0-e884b3b9bf2d9e4bb526eff390b71fc5)
所以.
七、证 (1)设,则存在N∈N,对于任意的n≥N,有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0030_0002.jpg?sign=1739377713-UEJglmvvBcFC6QF6CO5XvGdFmhQYMTMz-0-2557cde8535e688fc83eeafdc6c7f459)
因而的部分和有上界,从而
收敛.
(2)若,则存在N∈N,对于任意的n≥N,有
,于是
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0030_0007.jpg?sign=1739377713-Bcsaxbqb3K1TIxZ1savsYyYgsBXOi6wF-0-47230de3946ed0a401d0dd8fd312e357)
于是由发散,得到
发散.