![全国大学生数学竞赛辅导指南(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/714/26943714/b_26943714.jpg)
第三届全国大学生数学竞赛预赛(2011年非数学类)
试题
一、计算下列各题(本题共4个小题,每题6分,共24分)(要求写出重要步骤)
(1).
(2)设,求
.
(3)求,其中D={(x,y)|0≤x≤2,0≤y≤2}.
(4)求幂级数的和函数,并求级数
的和.
二、(本题两问,每问8分,共16分)设为数列,a,λ为有限数,求证:
(1)如果,则
.
(2)如果存在正整数p,使得,则
.
三、(15分)设函数f(x)在闭区间[-1,1]上具有连续的三阶导数,且f(-1)=0,f(1)=1,f′(0)=0.求证:在开区间(-1,1)内至少存在一点x0,使得f‴(x0)=3.
四、(15分)在平面上,有一条从点(a,0)向右的射线,其线密度为ρ.在点(0,h)处(其中h>0)有一质量为m的质点.求射线对该质点的引力.
五、(15分)设z=z(x,y)是由方程确定的隐函数,且具有连续的二阶偏导数.求证:
和
.
六、(15分)设函数f(x)连续,a,b,c为常数,Σ是单位球面x2+y2+z2=1.记第一型曲面积分.求证:
.
参考答案
一、(1)解 因为
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0022_0017.jpg?sign=1739378298-lywIcLVqjINJxH0HuTFo9aq4cJXBtBJB-0-93b291408e974f7e0fd02d66bc03b04b)
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0023_0001.jpg?sign=1739378298-D31ypZEIA66Fm9mxOyRTGmXqmDhNsWXo-0-90e6de5488c0fa50beb1eba408a36379)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0023_0002.jpg?sign=1739378298-s2gdmaybsvCZfRZjbqKVF2qLMW2secIy-0-f085e3535c551e8ce038859a8778eb5a)
(2)解 若θ=0,则.
若θ≠0,则当n充分大,使得2n>|k|时
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0023_0004.jpg?sign=1739378298-i4vqE1sL0d77O7tpe1FwqI9EENOhNpMD-0-b22a5f70b3926414bf6393b07f49dce1)
这时,.
(3)解 设
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0023_0006.jpg?sign=1739378298-AY2vJpIamTjrauU4OfNdnX7umyyT6XCi-0-a1915f9802ecec9e0ec8cc587453b636)
(4)解 令,则其定义区间为(
,
).∀x∈(
,
),有
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0023_0012.jpg?sign=1739378298-mYsAJ6nrQmflVPRObIDCA4HIl2oJUP5x-0-53faf02d40b5c4f22c5ae268c477681c)
于是
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0023_0013.jpg?sign=1739378298-GNqcJC7sIsrxZ2BgM6P61l71f7bmEQGq-0-f8d2d9921db80f2a80216d0a1c34d143)
二、证 (1)由,∃M>0使得|an|≤M,且∀ε>0,∃N1∈N,当n>N1时
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0023_0015.jpg?sign=1739378298-83wdV9xpn6FwsDTdlrox0gXuDN6Yr6pa-0-e8d3066ffc7df637ec55d1af7789b07c)
因为∃N2>N1,当n>N2时,.于是
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0024_0001.jpg?sign=1739378298-kOE8QlIMLhsjsFa8lCSEV3fnjIHl1IDw-0-dc5997b05545e68895cf4bc74d99b1ce)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0024_0002.jpg?sign=1739378298-vbHDG2ZVOaRXCjju28TA2ep1PeGgG5Ny-0-a81386b93d33aa7a0e5b555cc5d9d303)
(2)对于i=0,1,…,p-1,令,易知{
}为{an+p-an}的子列.
由,知
,从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0024_0007.jpg?sign=1739378298-zTcv50HmGUufR3mnDh8oszlP56ScuUfP-0-8498504c4c1983426366eb5d615e1669)
而,所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0024_0009.jpg?sign=1739378298-ixIH7ehO9AhFRgHueOJIMi5xfZYGzExL-0-ad6ea45b36b9762d420e4007b3b6b84e)
由,知
,从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0024_0012.jpg?sign=1739378298-YHeZadf4fO3c3eiwZNjX3AYtl0dX4KGb-0-f18c97c4d8eebd35a5e7d9f384e849ca)
∀m∈N,∃n,p,i∈N,0≤i≤p-1,使得m=np+i,且当m→∞时,n→∞.所以,.
三、证 由麦克劳林公式,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0024_0014.jpg?sign=1739378298-T5h89sUMSICz1pQRPvIrJKG0P1ZgobBk-0-318c060417a8870c3257bef5264f91f8)
η介于0与x之间,x∈[-1,1].
在上式中分别取x=1和x=-1,得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0024_0015.jpg?sign=1739378298-gVSxuuJUQbPHQGFjT4EZT3p577ecZmf1-0-519a9ff72d1650b8bae997588ffdec64)
两式相减,得
f‴(η1)+f‴(η2)=6.
由于f‴(x)在闭区间[-1,1]上连续,因此f‴(x)在闭区间[η2,η1]上有最大值M和最小值m,从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0024_0016.jpg?sign=1739378298-Cm8TOdCss8O1o4SJiQmbGm96PbrNCQp8-0-5de3c48a0ef62beb4b2e750088f6284c)
再由连续函数的介值定理,至少存在一点x0∈[η2,η1]⊂(-1,1),使得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0024_0017.jpg?sign=1739378298-XL1tQfdJ2wi7S7hg7ZiwDSNoMKZF2sem-0-faab13c01334b6ea6ee6ba292ec6f7cd)
四、解 在x轴的x处取一小段dx,其质量是ρdx,到质点的距离为,这一小段与质点的引力是
(其中G为万有引力常数).
这个引力在水平方向的分量为,从而
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0024_0021.jpg?sign=1739378298-y8cmRKcHbltFY2ZFORqQtPQdwRA2mxaq-0-15bae536e65878ff0120cc407971b031)
而dF在竖直方向的分量为,故
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0024_0023.jpg?sign=1739378298-vt8FdlejrnnpWrh9QLeAIabhS9cQ35aA-0-556f2896119ce4847a84ca4c60868179)
所求引力向量为F=(Fx,Fy).
五、解 对方程两边求导
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0025_0001.jpg?sign=1739378298-Kk8db6oUYYzqPi0oK7emMOqRWWPGiyMS-0-5af093157e4b43dc02218937b91f9652)
由此解得
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0025_0002.jpg?sign=1739378298-zCK4YY0fZETNcZ1qPTSHZTMIO1HyVBDv-0-18f5932ad2f083611c3d2fb591f375d4)
所以
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0025_0003.jpg?sign=1739378298-yndySAyMImf4ijBmyKYdJzhIBs6yEjY6-0-370e1a0e211426630e941781749c4028)
将上式再求导
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0025_0004.jpg?sign=1739378298-SXq95ike8mH6YCKDJONgnPeCocipGOQ3-0-dc6f7efd05a3b5db08c33e47d82bd4d4)
相加得到
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0025_0005.jpg?sign=1739378298-XWK5i1R5Xnn8E8qTb8X6R4GR6xYc21PA-0-6c89cbd923ce794077c06f66710ae602)
六、解 由Σ的面积为4π可见:当a,b,c都为零时,等式成立.
当它们不全为零时,可知:原点到平面ax+by+cz+d=0的距离是
![](https://epubservercos.yuewen.com/F2B7BA/15367249204203306/epubprivate/OEBPS/Images/figure_0025_0006.jpg?sign=1739378298-a8vyYEeM08Kc5khmaB34jXkOXaHNhR9u-0-429ecd394a185081267afe7d8d6dd1a5)
设平面,其中u固定,则|u|是原点到平面Pu的距离,从而-1≤u≤1,被积函数取值为
.两平面Pu和Pu+du截单位球Σ的截下的部分,这部分摊开可以看成一个细长条.这个细长条的长是
,宽是
,它的面积是2πdu,得证.