![茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/80/27054080/b_27054080.jpg)
2.2 课后习题详解
一、随机变量及其分布
1口袋中有5个球,编号为1,2,3,4,5.从中任取3个,以X表示取出的3个球中的最大号码.
(1)试求X的分布列;
(2)写出X的分布函数,并作图.
解:(1)从5个球中任取3个,共有种等可能取法.X为取出的3个
球中的最大号码,则X的可能取值为3,4,5.因为P(X=i)=P(X≤i)-P(X≤i-1),且当i≥3时,有
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image260.png?sign=1739496777-fnL5v0WA3I21EsWHqUNA6IRubGzy9NKg-0-41d1f323d7f44213e1f6fcb3f68c4e59)
所以
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image261.png?sign=1739496777-H1P4pAsBzImb5q5d8uaHTphsZoZKPK1S-0-cc87ce06083b703b4dfa93092cae7e69)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image262.png?sign=1739496777-gZOgf3yChwgQaHjiEdyScszlpWLZQQJG-0-6adbce1abc95413103d4d4c21a87cc1c)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image263.png?sign=1739496777-JByRXkeQ3kcjQFVR81qa79QKcScfd9HT-0-0da019d18370b7a2f84bc922cd45cb2d)
所以X的分布列为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image264.png?sign=1739496777-HqKfEDiFmIyHZHvi6G9bvr8Y1ffLlBKw-0-30fbc0e8a7f0ee2e984969f58465eede)
(2)由分布函数的定义知
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image265.png?sign=1739496777-QscI38h5JIijwRo05gDBs7RIfqTiwKHe-0-34797b515b9c0358db899ae9430ea24c)
F(x)的图形如图2-2-1.
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image266.jpg?sign=1739496777-baTFZUKWRoAF7RWzkbyF6AfUKXhWFgxh-0-a6623ec696fc0018d7b49ab3f7985900)
图2-2-1
2一颗骰子抛两次,求以下随机变量的分布列:
(1)X表示两次中所得的最小点数;
(2)Y表示两次所得点数之差的绝对值.
解:(1)一颗骰子抛两次,共有36种等可能的结果.X表示两次中所得的最小点数,则X的可能取值为1,2,3,4,5,6.由确定概率的古典方法得
P(X=1)=11/36,P(X=2)=9/36,P(X=3)=7/36
P(X=4)=5/36,P(X=5)=3/36,P(X=6)=1/36
将以上计算结果列表为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image267.png?sign=1739496777-pFh7i7PVG4ePEhwjDunCR5drAdEOifNn-0-e616488fd6244cc95a64810cb4b1155a)
(2)因为Y表示两次所得点数之差的绝对值,所以1,的可能取值为0,1,2,3,4,5.而
P(Y=0)=6/36=1/6,P(Y=1)=10/36=5/18,P(Y=2)=8/36=2/9
P(Y=3)=6/36=1/6,P(Y=4)=4/36=1/9,P(Y=5)=2/36=1/18
将以上计算结果列表为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image268.png?sign=1739496777-o0e0dJyYGQpSQmAjJ1Xm6Hj9xBIS40Ik-0-a3e19e203d453da04db0c6336769eacc)
3口袋中有7个白球、3个黑球.
(1)每次从中任取一个不放回,求首次取出白球的取球次数X的概率分布列;
(2)如果取出的是黑球则不放回,而另外放入一个白球,此时X的概率分布列如何.
解:X为首次取到白球的取球次数,则X的可能取值为1,2,3,4.记Ai为“第i次取出的球为黑球”,i=1,2,…,10.
(1)由乘法公式可得
P(X=1)=P(1)=7/10
P(X=2)=P(A12)=P(A1)P(
2|A1)=(3/10)×(7/9)=7/30
P(X=3)=P(A1A23)=(3/10)×(2/9)×(7/8)=7/120
P(X=4)=P(A1A2A34)=(3/10)×(2/9)×(1/8)×(7/7)=1/120
将以上计算结果列表为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image269.png?sign=1739496777-2ehEDO89SuEO9EryR78EwWd6CzhaVlMH-0-6407f9b1111cc8b2a8af5ebe18236d95)
(2)如果取出黑球不放回,而另外放入一个向球,则由乘法公式得
P(X=1)=P(1)=7/10
P(X=2)=P(A12)=(3/10)×(8/10)=6/25
P(X=3)=P(A1A23)=(3/10)×(2/10)×(9/10)=27/500
P(X=4)=P(A1A2A34)=(3/10)×(2/10)×(1/10)×(10/10)=3/500
将以上计算结果列表为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image270.png?sign=1739496777-O6yLpOgU23sshfxWzRWE7H8G7aI3i8c9-0-869ee0a2b51c8c3024e01b560fc3f96b)
4有3个盒子,第一个盒子装有1个白球、4个黑球;第二个盒子装有2个白球、3个黑球;第三个盒子装有3个白球、2个黑球.现任取一个盒子,从中任取3个球.以X表示所取到的白球数.
(1)试求X的概率分布列;
(2)取到的白球数不少于2个的概率是多少?
解:(1)记Ai为“取到第i个盒子”,i=1,2,3.由全概率公式得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image271.png?sign=1739496777-v5gFOOKDiqw7SYJpsTiJtIIlmJ3ngMJU-0-b14808e15aab2410d1ed6a7a94ec540e)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image272.png?sign=1739496777-OHaPyuEjFUQypVUqKCDbE8mxIssCirU5-0-bbf40f9b61728c1930d3339e97731946)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image273.png?sign=1739496777-SqMhtlOkUwdH7bGuy65qiEFhig9m5vPi-0-006a4fa97c77699893b9c7693b064ec8)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image274.png?sign=1739496777-NSkCX4euSewvZgRuISqbT7ub5ZuOiIBa-0-c76ed6e1f5cfa31d489946c3cc19ccc1)
将以上计算结果列表为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image275.png?sign=1739496777-GbCyI6XuawwEN8sJd1XJQEsUHe9iRaNn-0-7c40914906f47ef4d68f2a9111466b75)
(2)P(X≥2)=P(X=2)+P(X=3)=1/3.
5掷一颗骰子4次,求点数6出现的次数的概率分布.
解:记X为掷4次中点数6出现的次数,则X的可能取值为0,1,2,3,4.由确定概率的古典方法得
P(X=0)=54/64=0.4823
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image276.png?sign=1739496777-rMyo7DA2Y2rqPrOjicTgkJmHPrE9wzmx-0-20ed9fc2891ea1f9c5fdfd300c86f95d)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image277.png?sign=1739496777-7cKEOktz7mtEW1mD3YuTOQ1ujJKHZI7V-0-39ec1e1284fb996e80deccdd0f6f5e9e)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image278.png?sign=1739496777-eTA4DamD0gmkQRCvZOGacnl6AKU06krE-0-9f0b6813b45e1bd3f7b47f5de48d7d08)
P(X=4)=1/64=0.0008
将以上结果列表为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image279.png?sign=1739496777-nS2pgXlCmE1RbW6C3O8evZno6LdtTfoA-0-54d3548b71415c6fa7550270f59bca2f)
由以上的计算结果也可以看出:出现0次6点的可能性最大.
6从一副52张的扑克牌中任取5张,求其中黑桃张数的概率分布.
解:记X为取出的5张牌中黑桃的张数,则X的可能取值为0,1,2,3,4,5.将52张牌分成两类:一类为13张黑桃,另一类为39张除黑桃外的其他花色,则由抽样模型得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image280.png?sign=1739496777-NBlA8P3AT8GSUwUjJGvYmi5c9f1phk8e-0-96aeeb1443301072480189f9de60e5ee)
7一批产品共有100件,其中10件是不合格品.根据验收规则,从中任取5件产品进行质量检验,假如5件中无不合格品,则这批产品被接收,否则就要重新对这批产品逐个检验.
(1)试求5件中不合格品数X的分布列;
(2)需要对这批产品进行逐个检验的概率是多少?
解:(1)X的分布列为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image281.png?sign=1739496777-hGmmBQGkgUgGboWOSWubEInEfwTRItz5-0-fa586ccb5e062c266a8fe9a8fa688009)
计算结果列表略.
(2)“需要对这批产品进行逐个检验”则意味着“检验5个产品,至少有一个不合格品”,因此所求概率为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image282.png?sign=1739496777-0wTwEgP4pxEA8Zuonkfoh9I8QV0gL4MW-0-70c50f70bdaa9b153309d0e21830b8fb)
8设随机变量X的分布函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image283.png?sign=1739496777-RS8UUJ6bkCm52mQtzHbGD3t6LnPI3Oz8-0-371d2399d1188e6a2b19d269663143ef)
试求X的概率分布列及P(X<3),P(X≤3),P(X>1),P(X≥1).
解:X的概率分布列为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image284.png?sign=1739496777-B4jETWLsc5RQaTWCDiXpgV28SJ4dGa62-0-b98cac502206844ed9cd1f01e6091ee1)
P(X<3)=P(X=0)+P(X=1)=1/3
P(X≤3)=1-P(X=6)=1/2
P(X>1)=P(X=3)+P(X=6)=2/3
P(X≥1)=1-P(X=0)=3/4
9设随机变量X的分布函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image285.png?sign=1739496777-gKBwCx5twrNKOyEZjXT6o2mrpGAmwT7g-0-bf07a7cae44745eb2d1ebf46808fb18e)
试求P(X<2),P(0<X≤3),P(2<X<2.5).
解:这里X是连续随机变量,所求概率分别为
P(X<2)=F(2)=ln2=0.6931
P(0<X≤3)=F(3)-F(0)=1
P(2<X<2.5)=F(2.5)-F(2)=ln2.5-ln2=0.2231
10若P(X≥x1)=1-a,P(X≤x2)=1-β,其中x1<x2试求P(x1≤X≤x2).
解:P(x1≤X≤x2)=1-P(X<x1)-P(X<x2)=1-α-β.
11从1,2,3,4,5五个数中任取三个,按大小排列记为x1<x2<x3,令X=x2,试求:
(1)X的分布函数;
(2)P(X<2)及P(X>4).
解:(1)因为X的分布列为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image286.png?sign=1739496777-EJJCWhSmCM4B8Lcp1C0HQe39njX4d2Mb-0-684ae8948a895b5a8c20eed411fc204b)
所以X的分布函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image287.png?sign=1739496777-WzCKFZCzlKKUfFFUpnNmkIJbTvRBcoab-0-f7f4bf04f14feda49e0e474d86c9322a)
(2)P(X<2)=F(2-0)=0
P(X>4)=1-F(4)=1-1=0
12设随机变量X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image288.png?sign=1739496777-L30l8JDJ3MuDCcuFCubytAtU3RF9qTn8-0-095109efe61374fb17bb298fcce80fcd)
试求X的分布函数.
解:由于密度函数p(X)在(-∞,+∞)上分为四段(如图2-2-2),所以其分布函数也要分四段设立,具体如下:
当x<-1时,
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image289.png?sign=1739496777-GH7T7XF32n3jRxgWHGQOZjb0htrkdsPY-0-e46ddde9050a8995225c0018fd7e3ed6)
当-1≤x<0时,
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image290.png?sign=1739496777-YnreOvjc8y8Up8AY7rXkU6X8imOeqH1R-0-d6de0ab698ce4473f79d8a46fc0eec03)
当0≤x<1时,
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image291.png?sign=1739496777-ncxVM7OBAFu0mNsEAFNxVZDCbEsYmIi6-0-c364e19580745239538a3a2456c67840)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image292.jpg?sign=1739496777-gP4LCnvnuye0W3T9OJq4pp33LffD2onL-0-053dc60c560d4af6c03794c75157e6bb)
图2-2-2
当x>1时,
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image293.png?sign=1739496777-O2c4qVmygYbPZjt0TZeVvSuPVU7ctE8P-0-b60bcc7dbc3134f1baab3132bc372f24)
综上所述,X的分布函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image294.png?sign=1739496777-sPHhHAxDROot7W4ZwF7QedNATNZdQmwf-0-5855e28e59821a54c844994308928e3e)
13如果X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image295.png?sign=1739496777-tgDM4A3Py32mG3qXrcZ9K8cv7gmGBLBe-0-5e9612f7fc922b5d7060a08d276633e7)
试求P(X≤1.5).
解:因为密度函数P(x)的图形如图2-2-3.
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image296.jpg?sign=1739496777-nuo137xkyviNjS2KwntU0suuDCYjkK7l-0-5a3d23fbaee4098b09650da2b1bc394d)
图2-2-3
因此所求概率为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image297.png?sign=1739496777-pb9MpbT1uqkvdhCl0AyYEbZ3TctGfBnh-0-ab1836366293bed4bddde7d9cffbd89a)
14设随机变量X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image298.png?sign=1739496777-X1nvtoaXIiGRXP1TLvg8q158q7Q1vXIv-0-af46727be543501154106e5eda18a653)
试求:
(1)系数A;
(2)X落在区间(0,π/4)内的概率.
解:(1)因为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image299.png?sign=1739496777-jQq5IM5h4V8zqCs1BalehDBxRprq9lmL-0-6001a708b746924abef62b24614152e5)
由此解得A=1/2.
(2)所求概率为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image300.png?sign=1739496777-sMM9MjU5AOmdWfmtwDAII0cPU3EAlSyn-0-e9067deb340ad2317865e9cb7fb59e97)
15设连续随机变量X的分布函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image301.png?sign=1739496777-J4l1vTa1EQ6CkbPANk8Awj8jcI0ivEKS-0-4ea5cea091161883d67a42a72fb774c2)
试求:
(1)系数A;
(2)X落在区间(0.3,0.7)内的概率;
(3)X的密度函数.
解:(1)由F(x)的连续性,有
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image302.png?sign=1739496777-JqvRxLRRZfuREivDT7N30ON7UtoNvjgk-0-0622cb669a218729ec32c8e1c456cfa9)
由此解得A=1.
(2)P(0.3<X<0.7)=F(0.7)-F(0.3)=0.72-0.32=0.4
(3)X的密度函数(如图2-2-4)为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image303.png?sign=1739496777-ZEhw3NLWgLA4DrJCcjSrMGL1e8a7Miy6-0-76e43b7347a69aedc174f8200d070ea3)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image304.jpg?sign=1739496777-6SRpKRkc6w0hj0KiqjTDcrRzFcBvCkm8-0-8fa753da8655658fcf00f150904bd219)
图2-2-4
16学生完成一道作业的时间X是一个随机变量,单位为小时.它的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image305.png?sign=1739496777-akqdfTiNcUwIMPclS9seWEs2Po2WTLO6-0-9537de73c29b9802cf9aa02aeb27642b)
(1)确定常数c;
(2)写出X的分布函数;
(3)试求在20分钟内完成一道作业的概率;
(4)试求10分钟以上完成一道作业的概率.
解:(1)因为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image306.png?sign=1739496777-DnHvEDWZoYAfGC2Ub0y4JO8tWsT2mPag-0-c0b54884665a59c98e958690c6ee4f39)
由此解得c=21.
(2)当x<0时,
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image307.png?sign=1739496777-6G6yI3HZDkTda2c6Nwi4xj2cL7sRZ7op-0-d397dca9edb735ab56462d8d9578a419)
当0≤x<0.5时,
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image308.png?sign=1739496777-w1Jr4GCJWyMYrsF2U35ndkYzIt2OLmRv-0-c5f3641a7078522eef4fd2dfba5c57da)
当x>0.5时,
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image309.png?sign=1739496777-HV5EJjqQc0P8ujrUBvD0nnppPBXwLkXx-0-a09e79adfddc17085d148d800f0a9c76)
所以X的分布函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image310.png?sign=1739496777-8stHrhjKguwg0PfZxxIWrZ7Er96kqZ0i-0-4ec7994a12b936bd16f8386a6b969e81)
(3)所求概率为P(X≤1/3)=F(1/3)=7/27+1/18=17/54.
(4)所求概率为P(X>1/6)=1-F(1/6)=1-(7/216+1/72)=103/108.
17某加油站每周补给一次油,如果这个加油站每周的销售量(单位:千升)为一随机变量,其密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image311.png?sign=1739496777-I7Z6hACIyCDXwnfGPPEgN58gYlJxLpPc-0-bbecf4f6d51ccdaef55ad54c8d64cd7c)
试问该油站的储油罐需要多大,才能把一周内断油的概率控制在5%以下?
解:记X为该油站每周的销售量,k为该油站储油罐的最大储油量.则由题意知:k应该满足P(X>k)≤0.05
这等价于P(X≤k)≥0.95,因此由
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image312.png?sign=1739496777-GaAtU91IjmW3ItWMnwjTFhqcjgMhKTkV-0-9e78d03f75bde85106e97ce5b026f9b6)
中解得k≥45.072(千升).所以可取k=46(千升)即可将一周内断油的概率控制在5%以下.
18设随机变量X和Y同分布,X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image313.png?sign=1739496777-chinTsrzgN6isN3ojViByo0VpL0rUZ60-0-84ee773a5a705d73a00de90ad3c1f7f1)
已知事件A={X>a}和B={Y>a}独立,且P(A∪B)=3/4,求常数a.
解:由同分布可得P(A)=P(B),从而
3/4=P(A∪B)=P(A)+P(B)-P(AB)=2P(A)-[P(A)]2
由此解得P(A)=0.5,进而由
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image314.png?sign=1739496777-vpQdczNzHVAI1YkpT2zjYwxt3KIvSdi0-0-c19e68aeb76f94a7d73e5a0ece2124a6)
解得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image315.png?sign=1739496777-6OGvamuIZhIlKp42HWV07vcSKZQP5Iv1-0-9eb250cd268ba4cdbc900b962d57721e)
注:随机变量X与Y同分布,并不意味着X=Y,反之成立,即X=Y,则X与Y同分布.
19设连续随机变量x的密度函数p(x)是一个偶函数,F(x)为X的分布函数,求证对任意实数a>0,有
(1)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image316.png?sign=1739496777-LsYt0R8ZZovoZVEGCALJkIidAyhjPTHG-0-bace849a8721e22c57404ea284098164)
(2)P(|x|<a)=2F(a)-1
(3)P(|x|>a)=2[1-F(a)]
证:因为p(x)是一个偶函数,所以P(-x)=P(x),且从
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image317.png?sign=1739496777-fLFvR1BSRv2SQF1rGNd8XrpliVs57yLX-0-c0a04c43c75e89e0ab69d779fa9a4fc2)
可得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image318.png?sign=1739496777-O3YzweZCkkJeTWVd8IY6a2Ar0GpCesU4-0-c1a8d5b626d7d1f82063c855f77d60c1)
(1)在中令x=-t,则
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image320.png?sign=1739496777-TeeUwzV96Dz0wP4x98aErdfbaxvQBZIP-0-dfa14667e1eccc422d9208d3045dd110)
所以
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image321.png?sign=1739496777-lD3PYHhQExeQzGbhJjcd1PJ2nme6vCWy-0-0329c4d170b714b8c63acd7a64c87e4f)
(2)P(|x|<a)=P(-a<X<a)=F(a)-F(-a)=F(a)-[1-F(a)]=2F(a)-1
(3)P(|x|>a)=P(X<-a)+P(X>a)=F(-a)+1-F(a)=1-F(a)+1-F(a)=2[1-F(a)]
二、随机变量的数学期望
1设离散型随机变量X的分布列为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image322.png?sign=1739496777-M3VfDS9pdo9FeUX8ZCJR3M32Y8VdQjuM-0-69325f4e97df03121622d2d94895d36b)
试求E(X)和E(3X+5).
解:E(X)=(-2)×0.4+0×0.3+2×0.3=-0.2
E(3X+5)=[3×(-2)+5]×0.4+(3×0+5)×0.3+(3×2+5)×0.3=4.4
2某服装店根据历年销售资料得知:一位顾客在商店中购买服装的件数X的分布列为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image323.png?sign=1739496777-HYmfCAZHohWecsJcA02nA0ZokkDeusrn-0-7c1f1f47624bd6d40e40a4c99807e64a)
试求顾客在商店平均购买服装件数.
解:E(X)=1×0.33+2×0.31+3×0.13+4×0.09+5×0.04=1.9
3某地区一个月内发生重大交通事故数X服从如下分布
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image324.png?sign=1739496777-iDXYOLd1CDW4YDKDg5Uc3OvsijR4cYRm-0-29829e41318349fb96c40cab710a7daa)
试求该地区发生重大交通事故的月平均数.
解:E(X)=1×0.362+2×0.216+3×0.087+4×0.026+5×0.006+6×0.002=1.201
4一海运货船的甲板上放着20个装有化学原料的圆桶,现已知其中有5桶被海水污染了.若从中随机抽取8桶,记X为8桶中被污染的桶数,试求X的分布列,并求E(X).
解:因为X的可能取值为0,1,2,…,5,且
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image325.png?sign=1739496777-zTIbY8Ol2qmNCdESgPhBA2nxtiRjOdhF-0-b64664f9b076d609a78bea18c32f7533)
将计算结果列表为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image326.png?sign=1739496777-vEbuqg38Y7YxMNOCn9pBxyoYZVtB8uVf-0-8c8e05550141530c47e9f19c62cfbfb2)
由此得E(X)=1×0.2554+2×0.3973+3×0.2384+4×0.0542+5×0.0036=2
5用天平称某种物品的质量(砝码仅允许放在一个盘中),现有三组砝码:(甲)1,2,2,5,10(g);(乙)1,2,3,4,10(g);(丙)1,1,2,5,10(g),称重时只能使用一组砝码.问:当物品的质量为1g,2g,…,10g的概率是相同的,用哪一组砝码称重所用的平均砝码数最少?
解:分别用X,Y,Z表示用甲、乙、丙三组砝码称重时所用的砝码数.
(1)用甲组砝码称重时,1个砝码可称4种物品(1,2,5,10(g));2个砝码可称4种物品(3,4,6,7(g));3个砝码可称2种物品(8,9(g)).所以X的分布列为列为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image327.png?sign=1739496777-9KncbaDzBscLWCKAHnMF5J0FlopC0bAp-0-aa43d8d16f3179b9dfcc186f6adf323e)
因此平均所用砝码数为:E(X)=1×4/10+2×4/10+3×2/10=1.8.
(2)用乙组砝码称重时,1个砝码可称5种物品(1,2,3,4,10(g));2个砝码可称3种物品(5,6,7(g));3个砝码可称2种物品(8,9(g)).所以Y的分布列为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image328.png?sign=1739496777-JDRbmpSFkOXjehSTeAOaDdA9a9Ms9zzt-0-5a9e84c3442c21ef47f72a1cbfa0d86e)
因此平均所用砝码数为:E(Y)=1×5/10+2×3/10+3×2/10=1.7.
(3)用丙组砝码称重时,1个砝码可称4种物品(1,2,5,10(g));2个砝码可称3种物品(3,6,7(g));3个砝码可称2种物品(4,8(g));4个砝码可称1种物品(9(g)).所以Z的分布列为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image329.png?sign=1739496777-bC74ZreD9Zj7aV4XAua8ViOwfo7JCPDM-0-2ed62469d8438bf9af5e32543047ddbf)
因此平均所用砝码数为:E(Z)=1×4/10+2×3/10十3×2/10+4×1/10=2.0.
所以用乙组砝码称重时,所用的平均砝码数最少.
6假设有十只同种电器元件,其中有两只不合格品.装配仪器时,从这批元件中任取一只,如是不合格品,则扔掉重新任取一只;如仍是不合格品,则扔掉再取一只,试求在取到合格品之前,已取出的不合格品只数的数学期望.
解:记Ai为“第i次取m的是合格品”,i=1,2,3.随机变量X为“取到合格品之前,已取出的不合格品数”.则
P(X=0)=P(A1)=8/10
P(X=1)=P(1A2)=(2/10)×(8/9)=8/45
P(X=2)=P(1
2A3)=(2/10)×(1/9)×(8/8)=1/45
上述三个概率组成一个分布列,其数学期望为E(X)=1×8/45+2×1/45=2/9
7对一批产品进行检查,如查到第a件全为合格品,就认为这批产品合格;若在前a件中发现不合格品即停止检查,且认为这批产品不合格.设产品的数量很大,可认为每次查到不合格品的概率都是p.问每批产品平均要查多少件?
解:设每批要查X件,记q=1-p,则X的分布列为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image330.png?sign=1739496777-lIJrcTqWSLJJZSndzuCtF9ALCCQRQDgH-0-78b4e0296d546baa9788c4de2c248185)
所以
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image331.png?sign=1739496777-O5pWlsyJcUwsgLRyxKkHir2IHS0qF92D-0-d3d4f1871e007af4ef7d1b3fcf617e80)
8某人参加“答题秀”,一共有问题1和问题2两个问题.他可以自行决定回答这两个问题的顺序.如果他先回答一个问题,那么只有回答正确,他才被允许回答另一题.如果他有60%的把握答对问题1,而答对问题1将获得200元奖励;有80%的把握答对问题2,而答对问题2将获得100元奖励.问他应该先回答哪个问题,才能使获得奖励的期望值最大化?
解:记X为回答顺序为1,2时,所获得的奖励,则X的分布列为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image332.png?sign=1739496777-9xi6wRFdY0YjZSvGs1pU06Cc0kNEeiN9-0-2867b9768ecaf2e43836c16b3cd10730)
由此得E(X)=168(元)
又记Y为回答顺序为2,1时,所获得的奖励,则Y的分布列为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image333.png?sign=1739496777-fsYuUjBOZpeJKGVNnoSirJX2C2JsqcT0-0-10b61a74a4b5d6c446e625af0c4e3fd8)
由此得E(Y)=176(元)
因此应该先回答问题2,可以使获得的奖励的期望值最大.
9某人想用10000元投资于某股票,该股票当前的价格是2元/股.假设一年后该股票等可能的为1元/股和4元/股.而理财顾问给他的建议是:若期望一年后所拥有的股票市值达到最大,则现在就购买;若期望一年后所拥有的股票数量达到最大,则一年以后购买.试问理财顾问的建议是否正确?为什么?
解:如果现在就购买2元/股,则10000元可购买5000股.记X为一年后所拥右的股票市值X的分布列为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image334.png?sign=1739496777-yvpQR0UDf2Ja9ThSMOaV2a3ymRHrm9kT-0-33997e10c6693d68b39d3f631e34fd89)
所以E(X)=12500元,比一年后购买(市值为10000元)大.
如果一年后购买,记Y为一年后所购股票数,则10000元等可能地购买10000/1=10000股或10000/4=2500股,所以Y的分布列为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image335.png?sign=1739496777-zm0rh03bJ1y2JjXpOcJ9yY3XWcjOz8Xd-0-56bf72ee41711fe973c3cc9644dbc147)
由此得E(Y)=5000+1250=6250(股),比现在就购买(5000股)多.
因此,理财顾问的建议是正确的.
10保险公司的某险种规定:如果某个事件A在一年内发生了,则保险公司应付给投保户金额a元,而事件A在一年内发生的概率为p.如果保险公司向投保户收取的保费为ka,则问k为多少,才能使保险公司期望收益达到a的10%?
解:记X为保险公司的收益,则X的分布列为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image336.png?sign=1739496777-C6xUNZFjM3yoiECtbyv6NMGyQBr7K6C5-0-ad89f184efb1e49ee76280befa64a039)
所以保险公司的期望收益为E(X)=-ap+ka(1-p).由E(X)≥0.1a,即从-ap+ka(1-p)≥0.1a中解得k≥(0.1+p)/(1-p),所以取k=(0.1+p)/(1-p)即可满足要求.
注意:这里k是p的严格增函数,具体有
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image337.png?sign=1739496777-K8SsDn4PQrJ73M4ILtE78i5hGyk9o7wU-0-6bb91787693d4fc0bd2c8f789a04f652)
由此可见,若特定事件A发生的概率超过0.4时,再参加此种保险已无多大实际意义了.
11某厂推土机发生故障后的维修时间T是一个随机变量(单位:小时),其密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image338.png?sign=1739496777-PfSvn3L36SD2qDhx8JXeWOwIHkb16qmF-0-7ca27b75d6ca30d39854ad9b45a4294d)
试求平均维修时间.
解:计算得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image339.png?sign=1739496777-KD0XXdvXouZF79uy9uf8o79tN9iZtqWz-0-c9444a2cdb387ba90294b07de34ee7b4)
故其平均维修时间为50小时.
12某新产品在未来市场上的占有率X是仅在区间(0,1)上取值的随机变量,它的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image340.png?sign=1739496777-41XTqB62M4xl2l9Du0waWBxOCksxYjNE-0-acfa945d6a06cc6edf3b20dd1083556a)
试求平均市场占有率.
解:这里平均市场占有率就是E(X).
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image341.png?sign=1739496777-1nJbJFoRYvxmhSIf3XP7iDhENl1lhpPB-0-7feb7c22ef90e0314cd6bec01787473e)
13设随机变量X的密度函数如下,试求E(2X+5).
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image342.png?sign=1739496777-Snft2TDMNisxgklW2nxPoUPIPxeV6Xro-0-73ecc850f5bce1ce10ba6385a61b2d0b)
解:因为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image343.png?sign=1739496777-6x89HDi0J8dscomh3uV6vwZrY91OmcEy-0-437e6e6e3347ded23534803c390f33c2)
所以E(2X+5)=7.
14设随机变量X的分布函数如下,试求E(X).
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image344.png?sign=1739496777-8frCmwDFPyEoUrGuzg296xoBl17yPbWj-0-c9ce02d9f3ffc12ceb30e9be32c34a22)
解:X的密度函数(如图2-2-6)为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image345.png?sign=1739496777-4uLfM8HMfjVajLFANOcDPDaV9TGOrYns-0-9a17d7a78db453e1e38d38ee57223fcc)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image346.jpg?sign=1739496777-FPOJd24hze8rkzgVIiyNFlEN6P091Eit-0-53d0d3964009689b598c746b2d5f2729)
图2-2-6
所以
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image347.png?sign=1739496777-bRythC9HdIloCjTfdRQT50LTwpwQAH19-0-30f2485e9bb6eb0d00409c5c678ab9b3)
15设随机变量X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image348.png?sign=1739496777-TXuLRh5dGOKygVFtwv2LtFFSaFG5LtvZ-0-000f3281462a210b38bf2ee2735390ef)
如果E(X)=2/3,求a和b.
解:由
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image349.png?sign=1739496777-g4mZ1MeL5RNaG9HKVQrWLcKZYSPl0OSb-0-9cb49c5650d849cd8e356054065b5d35)
得:a+b/3=1①
又由
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image350.png?sign=1739496777-lscgaJqeOY4ItDGQEhgysqOcYMwWRrXR-0-b12de1377f2147f8e41f26bde5d2111a)
得:a/2+b/4=2/3②
联立①②,解得a=1/3,b=2.
16某工程队完成某项工程的时间X(单位:月)是一个随机变量,它的分布列为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image351.png?sign=1739496777-BfWUeImKcBK1dMV3WkNPFrl9HCCH0WJd-0-8782e42d628b2e43dffcfb2f97d977b0)
(1)试求该工程队完成此项工程的平均月数;
(2)设该工程队所获利润为Y=50(13-X),单位为万元.试求工程队的平均利润;
(3)若该工程队调整安排,完成该项工程的时间X1(单位:月)的分布为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image352.png?sign=1739496777-sDpVz59KPfqJ5etgkdEiPQsi62VeCrC4-0-bfe2bdc34688725dc15382036356b4e5)
则其平均利润可增加多少?
解:(1)E(X)=10×0.4+11×0.3+12×0.2+13×0.1=11,该工程队完成此项工程平均需11个月.
(2)E(Y)=E[50(13-X)]=650-50×E(X)=650-550=100,该工程队所获平均利润为100万元.
(3)调整安排后,E(X1)=10×0.5+11×0.4+12×0.1=10.6,所以平均利润为E(Y1)=E[50(13-X1)]=650-50×10.6=120,由此得平均利润可增加120-100=20(万元).
17设随机变量X的概率密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image353.png?sign=1739496777-KRb7qyOau6k13bzBczPtD9QEDK7NHc3y-0-ced4cd2a00bc4f6989270f97f0441404)
对X独立重复观察4次,Y表示观察值大于π/3的次数,求Y2的数学期望.
解:因为事件“观察值大于π/3”可用{X>π/3}表示,从而
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image354.png?sign=1739496777-17lprhkrZ1zfOyYw70zvSTojjp30C4yK-0-45845fd3622947acf1d530ba6471939f)
而Y的分布列为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image355.png?sign=1739496777-9IO2ivwgKjCNqAXnOeJz3xgHpY2GIn2z-0-a2d3b09b52fd45251380ce08c463eda5)
所以
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image356.png?sign=1739496777-z57QbCxFTwiUTX9UbP1AmzU057asHJSc-0-c450e7df69de47de55e86d1ff5941339)
18设随机变量X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image357.png?sign=1739496777-2c5oW1ROHwM0hdrdjsfuqFs5D1VJbT7y-0-3f68718ea45e28d9ffbcddc0122518ce)
试求1/X2的数学期望.
解:计算得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image358.png?sign=1739496777-DYVkZ41dWkrOi0hqFssnnh1zENzBM6Jo-0-0fa6f211809dea462c7103a9d16e5df3)
19设X为仅取非负整数的离散随机变量,若其数学期望存在,证明:
(1)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image359.png?sign=1739496777-bNMGEgE6H4c2HZMVG6dwDVwjqbtsLjuX-0-fc92b41ae03c8889e444476b6c6c2e42)
(2)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image360.png?sign=1739496777-X0t2NCgfvBnV6VNzMQVSAVXgldtoCMQE-0-cba7821c325af20678e33d17926b40fc)
证:(1)由于
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image361.png?sign=1739496777-OcaJ8bWFRkFEs4M1ryJduAaABNYvK6eW-0-e3f6b4a8656e363194f497a6c438fb7c)
存在,所以该级数绝对收敛,从而有
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image362.png?sign=1739496777-oDONbpwdCHRK1e03dTyPovBC4khL2fuN-0-f1a4f60d08bc20e54a314ec8b58a8d77)
(2)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image363.png?sign=1739496777-cr9g71pKIZ1KFX594J2gd2PRINqfqUEx-0-0c451210b7591126f79c12480674f4e9)
20设连续随机变量X的分布函数为F(x),且数学期望存在,证明:
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image364.png?sign=1739496777-7lxKQcxpcFZejxcm7RguPu0MMVY7iEoQ-0-65e89a688da98a3c0d9cff76f17fc83f)
证:
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image365.png?sign=1739496777-BIyFRqRBb6IIlAIYLx26rkStFiVnQ8LI-0-f6b84d54247a23311c7fb1f5e0510acd)
将第一个积分改写为二次积分,然后改变积分次序,得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image366.png?sign=1739496777-BVgKa6Whtp7dQtWsJZkeNHE3Yvb8U42u-0-9636e97f14a065d010689acce9464a33)
第二个积分亦可改写为二次积分,然后改变积分次序,可得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image367.png?sign=1739496777-1C4NOQOIhcT3n1TopHefvWgGzRt2coag-0-af68ed5a1c972bbc434aa14252ee1eee)
这两个积分之和恰好是所要求证明的等式.
21设X为非负连续随机变量,若E(Xn)存在,试证明:
(1)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image368.png?sign=1739496777-cHNbFWgCLNeEjFe1KcocDkG14t2zAY7x-0-3f336b3304ab8dc9e4349b386fc0df96)
(2)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image369.png?sign=1739496777-gzcoIiDfxAX8h4ki2t7z6Vuf2igGOtX2-0-20a218ef75893a41cb7d49e1f00e498c)
证:(1)因为X为非负连续随机变量,所以当x<0时,有F(x)=0.利用20题给出的公式得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image370.png?sign=1739496777-mDkWjptUe81V3XCoZfFClfQZt45TVMPv-0-036d1c8e66f3f0e42b31894dd434d0e1)
(2)因为X为非负连续随机变量,所以Xn也是非负连续随机变量,因此利用(1)可得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image371.png?sign=1739496777-eBg4WGfP055nN1G2sVE1NsGiuVSjmE8Y-0-5bce6d27e68edcbdb9852037eca6e3c3)
令y=xn,则
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image372.png?sign=1739496777-5IHoWN1wCBxDVrnsDUCRH04VI88DYlIG-0-ad69fb710609e56a91e8f1417ca872a5)
三、随机变量的方差与标准差
1设随机变量X满足E(X)=Var(X)=λ,已知E[(X-1)(X-2)]=1,试求λ.
解:由E(X2)=Var(X)+[E(X)]2=λ+λ2,及题设条件
1=E[(X-1)(X-2)]=E[X2-3X+2]=E(X2)-3λ+2=λ+λ2-3λ+2
得λ2-2λ+1=0,从中解得λ=1.
2假设有10只同种电器元件,其中有两只不合格品.装配仪器时,从这批元件中任取一只,如是不合格品,则扔掉重新任取一只;如仍是不合格品,则扔掉再取一只,试求在取到合格品之前,已取出的不合格品数的方差.
解:记X为取到合格品之前,已取出的不合格品数,则X的分布列为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image373.png?sign=1739496777-3LnEeQ3LaMadbJxkYBwHgIy5CJ6qpYom-0-4dbfa847c245fd67d4e79864cd9ec990)
由此得E(X)=2/9,E(X2)=4/15,Var(X)=4/15-(2/9)2=88/405=0.2173
3已知E(X)=-2,E(X2)=5,求Var(1-3X).
解:Var(1-3X)=9Var(X)=9[E(X2)-(E(X))2]=9[5-4]=9
4设P(X=0)=1-P(X=1),如果E(X)=3Var(X),求P(X=0).
解:记p=P(X=0),则P(X=1)=1-p,因为E(X)=1-p,Var(X)=p(1-p),所以由E(X)=3Var(X)得1-p=3p(1-p).
由此解得p=1/3或p=1.因为p=1导致X为单点分布,即X几乎处处为0,这无多大实际意义,故舍去.所以得P(X=0)=p=1/3.
5设随机变量X的分布函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image374.png?sign=1739496777-1CH8bV4KntNKoL5OgF7g3sBdtO854qZY-0-c4c9de9179af24b16fed8e75a0faa7dc)
试求Var(X).
解:X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image375.png?sign=1739496777-bmHMVwxzuzDGX2jHTw1SbugCDnjL1znp-0-77c94853347115a3df6e45d5fd5d93d2)
所以
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image376.png?sign=1739496777-Q2g92vIGVUsisSAvRXwrT6S7dcBhxUsU-0-57f45006a0a8186da451f4da4c57dd7d)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image377.png?sign=1739496777-ITqSnvRvHbQo6ROkA8xy3sD9GV2PRXwp-0-c97505597f0c67364d94fb87933c129c)
由此得Var(X)=E(X2)-[E(X)]2=7.5-1=6.5.
6设随机变量X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image378.png?sign=1739496777-gi06QPb53SHvtnL6mS0kxQOZ1dkmkDst-0-2e2805b261a4555b03047cd895a20bae)
试求Var(3X+2).
解:因为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image379.png?sign=1739496777-rlAco54u1xdG2aUjxRKZfQyZPAEaqFnd-0-59fb3458d55be57c819ce46bc4694b91)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image380.png?sign=1739496777-loPxFOKx3AhN1w5mVjM98E1fJML8HZxJ-0-91e9c22a57f4e70c38ad6758d233dfba)
所以Var(X)=E(X2)-[E(X)]2=1/6,由此得Var(3X+2)=9Var(X)=1.5.
7设随机变量X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image381.png?sign=1739496777-P9YUBB6pAjkWF0QRvmkq3rIOcSDoQ9Eq-0-60cade6c76e2e6f479def0270bccf0b6)
如果已知E(X)=0.5,试计算Var(X).
解:因为
①
②
联立①②,解得a=6,b=-6.由此得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image384.png?sign=1739496777-RQk2USgOU8iLhwzGc6P4gXLpVAqIsF2e-0-8c72c387533a9172216ad73a8fb84257)
所以Var(X)=E(X2)-[E(X)]2=3/10-1/4=0.05
8设随机变量X的分布函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image385.png?sign=1739496777-AX6COcyyYCWY2XFpohrXyzzIQUcAySKg-0-8238d5425e8cd6d9f5ee547f02615fed)
试求E(X)和Var(X).
解:因为X为非负连续随机变量,所以利用习题2.2第21题,有
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image386.png?sign=1739496777-p4QD1pLCXLWBd4R13jDr50jyJc1H1TFz-0-157887f400151d1d2239db5898bc0733)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image387.png?sign=1739496777-d5jCgzV6y1joT7SnAXBfPNlvZPBc5R7v-0-a666d48c2982ebe9ffdfcb33d438e3e5)
由此得Var(X)=1-π/4.
注:此题也可直接计算得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image388.png?sign=1739496777-xRnqwAElIAkesIHqU2AE65Gu44KxiVoO-0-b6accba17e126b81e80958aa9bc30575)
所以
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image389.png?sign=1739496777-35RA0c2LHYpCVrnc89lvY4JzhrPxKwoI-0-62e93d28b65210299b738b7cf6b5ce93)
9试证:对任意的常数c≠E(X),有Var(X)=E(X-E(X))2<E(X-c)2.
证:E(X-E(X))2=E[(X-c)-(E(X)-c)]2=E(X-c)2-(E(X)-c)2,由于c≠E(X),所以(E(X)-c)2>0,由此得Var(X)=E(X-E(X))2<E(X-c)2.
10设随机变量X仅在区间[a,b]上取值,试证:a≤E(X)≤b,Var(X)≤[(b-a)/2]2
证:仅对连续随机变量X加以证明.记p(x)为X的密度函数,因为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image390.png?sign=1739496777-YtFFmMe9TIBELhl8PoUPN01k30hXwBnv-0-74a7254ef1308857c010ad6be0d931cb)
同理可证:E(X)≥a.由上题的结论知
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image391.png?sign=1739496777-y8qddr6OkUr2NQ77TeE1g7x5Yfb2Ofq8-0-8ff96ee76fd54405fa9df2408f774785)
注:此命题表明有界随机变量的数学期望和方差总是存在的.
11设随机变量X取值x1≤…≤xn的概率分别是
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image392.png?sign=1739496777-WKkxu0QioWOkZr34ToJqpX9zUdgPb9Zt-0-900b0e3178e87d70537583baf442272f)
证明
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image393.png?sign=1739496777-V1z1OwhJdIwGy8XC5PuJ201txFftb72f-0-8bbc449af97f2ca0b7fb072d8437eac8)
证:仿上题有
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image394.png?sign=1739496777-0rUZTlFLz0yi0gkq2XRlymICOkvaO8nl-0-0308efee69b9f975300b70247c3b0b00)
12设g(x)为随机变量X取值的集合上的非负不减函数,且E(g(X))存在,证明:对任意的ε>0,有P(X>ε)≤E(g(X))/g(ε)
证:仅对连续随机变量X加以证明.记p(x)为X的密度函数,则
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image395.png?sign=1739496777-Us5Y3HXtAmLWjLxuTnFUiWfq6I43tC3Q-0-8636d3d8ce61b489f1e1ce5b7c54aa75)
注:此题给出证明概率不等式的一种方法——两次放大:第一次放大被积函数;第二次放大积分区域.
13设X为非负随机变量,a>0.若E(eaX)存在,证明:对任意的x>0,有P(X≥x)≤E(eaX)/eaX.
证:因为当a>0时,g(x)=eax是非负不减函数,所以由上题即可得结论.
14已知正常成年男性每升血液中的白细胞数平均是7.3×109,标准差是0.7×109.试利用切比雪夫不等式估计每升血液中的白细胞数在5.2×109至9.4×109之间的概率的下界.
解:记X为正常成年男性每升血液中的白细胞数,由题设条件知
E(X)=7.3×109,σ(X)=0.7×109
所以由切比雪夫不等式得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image396.png?sign=1739496777-q5WZwYwc3A564CssCeZh5fv4TNkeo9LB-0-5c4e3ed54700ea5f267954ef44ed01e7)
四、常用离散分布
1一批产品中有10%的不合格品,现从中任取3件,求其中至多有一件不合格品的概率.
解:记X为取出的3件产品中的不合格品数,则X~b(3,0.1),所求概率为
P(X≤1)=P(X=0)+P(X=1)=0.93+3×0.1×0.92=0.972
2一条自动化生产线上产品的一级品率为0.8,现检查5件,求至少有2件一级品的概率.
解:记X为检查5件产品中的一级品数,则X~b(5,0.8),所求概率为
P(X≥2)=1-P(X=0)-P(X=1)=1-0.25-5×0.8×0.24=0.9933
3某射手命中10环的概率为0.7,命中9环的概率为0.3.试求该射手三次射击所得的环数不少于29环的概率.
解:记X为三次射击中命中10环的次数,则X~b(3,0.7).因为“所得的环数不少于29环”相当于“射击三次至少二次命中10环”,故所求概率为
P(X≥2)=P(X=2)+P(X=3)=3×0.72×0.3+0.73=0.784
4经验表明:预定餐厅座位而不来就餐的顾客比例为20%.如今餐厅有50个座位,但预定给了52位顾客,问到时顾客来到餐厅而没有座位的概率是多少?
解:记X为预定的52位顾客中不来就餐的顾客数,则X~b(52,0.2).因为“顾客来到餐厅没有座位”相当于“52位顾客中最多1位顾客不来就餐”,所以所求概率为
P(X≤1)=P(X=0)+P(X=1)=0.852+52×0.851×0.2=0.0001279
5设随机变量X~b(n,p),已知E(X)=2.4,Var(X)=1.44,求两个参数n与p各为多少?
解:从np=E(X)=2.4和np(1-p)=Var(X)=1.44中解得n=6,p=0.4.
6设随机变量X服从二项分布b(2,p),随机变量Y服从二项分布b(4,p).若P(X≥1)=8/9,试求P(Y≥1).
解:从8/9=P(X≥1)=1-P(X=0)=1-(1-p)2中解得p=2/3.由此得
P(Y≥1)=1-P(Y=0)=1-(1-p)4=1-(1/3)4=80/81
7一批产品的不合格品率为0.02,现从中任取40件进行检查,若发现两件或两件以上不合格品就拒收这批产品.分别用以下方法求拒收的概率:
(1)用二项分布作精确计算;
(2)用泊松分布作近似计算.
解:记X为抽取的40件产品中的不合格品数,则X~b(40,0.02).而“拒收”就相当于“X≥2”.
(1)拒收的概率为P(X≥2)=1-P(X=0)-P(X=1)=1-0.9840-40×0.9839×0.02=0.1905
(2)因为λ=40×0.02=0.8,所以用泊松分布作近似计算,可得近似值为P(X≥2)=1-P(X=0)-P(X=1)≈1-e-0.8-0.8×e-0.8=0.1912.可见近似值与精确值相差0.0007,近似效果较好.
8设X服从泊松分布,且已知P(X=1)=P(X=2),求P(X=4).
解:由P(X=1)=P(X=2)得λe-λ=λ2e-λ/2,从中解得λ=2,由此得
P(X=4)=λ4e-λ/(4!)=24e-2/(4!)=0.0902
9已知某商场一天来的顾客数X服从参数为λ的泊松分布,而每个来到商场的顾客购物的概率为p,证明:此商场一天内购物的顾客数服从参数为λp的泊松分布.
证:用Y表示商场一天内购物的顾客数,则由全概率公式知,对任意正整数k有
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image397.png?sign=1739496777-FIo1r0KM8IInvfZPFcgvILjFtsFj31HZ-0-d6a7feb60e5b24cacf512a6221579cb0)
这表明:Y服从参数为λp的泊松分布.
10设一个人一年内患感冒的次数服从参数λ=5的泊松分布.现有某种预防感冒的药对75%的人有效(能将泊松分布的参数减少为λ=3),对另外的25%的人不起作用.如果某人服用了此药,一年内患了两次感冒,那么该药对他(她)有效的可能性是多少?
解:记事件A为“服用此药后,一年感冒两次”,事件B为“服用此药后有效”.因为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image398.png?sign=1739496777-YZfGjsiTsIzN7LMzdKul36FVmW54qPTI-0-1a8fba7684568bb50a4684302645739a)
因此所求概率为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image399.png?sign=1739496777-n1Ayp9yF077QXhcedngxlk7YAjHTwCaG-0-cea5de1a5a42a9cc7a7a115f3d1c0d17)
11有三个朋友去喝咖啡,他们决定用掷硬币的方式确定谁付账:每人掷一枚硬币,如果有人掷出的结果与其他两人不一样,那么由他付账;如果三个人掷出的结果是一样的,那么就重新掷,一直这样下去,直到确定了由谁来付账.求以下事件的概率:
(1)进行到了第2轮确定了由谁来付账;
(2)进行了3轮还没有确定付账人.
解:记X=所掷的轮数,则X~Ge(p),其中
1-p=P(重新掷)=P(出现三个正面或出现三个反面)=1/8+1/8=1/4
所以p=3/4.
(1)第2轮确定由谁来付账的概率为
P(X=2)=(1-p)p=(1/4)×(3/4)=3/16=0.1875
(2)进行了3轮还没有确定付账人的概率为
P(X>3)=1-P(X=1)-P(X=2)-P(X=3)=1-3/4-(1/4)×(3/4)-(1/4)2×(3/4)=1/64=0.0156
12从一个装有m个白球、n个黑球的袋中进行有返回地摸球,直到摸到白球时停止.试求取出黑球数的期望.
解:令X为取到白球时已取出的黑球数,则Y=X+1服从几何分布Ge(m/(n+m)),所以E(Y)=(n+m)/m=n/m+1,由此得E(X)=E(Y)-1=n/m.
13某种产品上的缺陷数X服从下列分布列:P(X=k)=1/2k+1,k=0,1,…,求此种产品上的平均缺陷数.
解:由题意知Y=X+1可看作服从几何分布Ge(1/2)的随机变量,所以E(Y)=2,由此得E(X)=E(Y)-1=1.
14设随机变量X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image400.png?sign=1739496777-D080byEpmJx3RV18MdYSsZhnJhZ9cRAl-0-d2fdca847fb85514728e519eb1f15886)
以Y表示对X的三次独立重复观察中事件{X≤1/2}出现的次数,试求P(Y=2).
解:因为Y~b(3,p),其中
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image401.png?sign=1739496777-MBQk8bbTRe18NmcYryRSuiEks0u3iP2i-0-61fc6ce9800cc1bdbe61f719674a4ffc)
所以
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image402.png?sign=1739496777-P0xmE5NLhg4LRoQxvuM8aRVdxnJDO3Fs-0-0c8ed761e7275d5bb06e1195b8fa24ff)
15某产品的不合格品率为0.1,每次随机抽取10件进行检验,若发现其中不合格品数多于1,就去调整设备.若检验员每天检验4次,试问每天平均要调整几次设备.
解:令X为每次检验中不合格品的个数,则X~b(10,0.1),而调整设备的概率为P(X>1)=0.2639.又记Y为每天调整设备的次数,则Y~b(4,0.2639),所以平均每天调整次数为E(Y)=4×0.2639=1.0556.
16一个系统由多个元件组成,各个元件是否正常工作是相互独立的,且各个元件正常工作的概率为p.若在系统中至少有一半的元件正常工作,那么整个系统就有效.问p取何值时,5个元件的系统比3个元件的系统更有可能有效?
解:记X为5个元件的系统中,正常工作的元件数;Y为3个元件的系统中,正常工作的元件数.则X~b(5,p),Y~b(3,p).
对X而言,系统有效的概率为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image403.png?sign=1739496777-jBgwooZLPERz72TDYWcSVbwBwSGxYGCf-0-2790357772196944a8e6581065da36a9)
对Y而言,系统有效的概率为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image404.png?sign=1739496777-YMfDIKKCx3Pnk1x0Gd5FuiH1387Ymm2v-0-1b87d20bc9d821e677bb81531cdfcccf)
根据题意,求满足下式的p:
P(X≥3)>P(Y≥2),即10p3(1-p)2+5p4(1-p)+p5>3p2(1-p)+p3.
上述不等式可简化为2p3-5p2+4p-1>0,或(p-1)2(2p-1)>0,或(2p-1)>0,从而有p>1/2.
17设随机变量X服从参数为λ的泊松分布,试证明:E(Xn)=λE[(X+1)n-1].利用此结果计算E(X3).
证:
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image405.png?sign=1739496777-MQVgMKbaXbDulPkMaffTdXpzOIx5rqL5-0-b8ee73bf52301530a43a1edd28f25a79)
由此得E(X3)=λE(X+1)2=λ2E(X+2)=λ2(λ+2)=λ3+2λ2
18令X(n,p)表示服从二项分布b(n,p)的随机变量,试证明:P(X(n,p)≤i)=1-P(X(n,1-p)≤n-i-1).
证:
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image406.png?sign=1739496777-dTFgFwUN0BXK5NgsOlIXELMdP0jWCVkV-0-19eefb408fa24f697feb2b7f734cf6fd)
19设随机变量X服从参数为p的几何分布,试证明:E(1/X)=-plnp/(1-p)
证:
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image407.png?sign=1739496777-MLfIy2vzoPKhFQJYWQOq0ZVqNleqCMkO-0-ee0de5caaece3f19699d0876c0095d06)
20设随机变量X~b(n,p),试证明:
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image408.png?sign=1739496777-xf915pq998csOweKLZfV1n0tyLYTCfmQ-0-c77e7ca0dcf361e4db851f4f096e5647)
证:
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image409.png?sign=1739496777-yHkzHhQEGaHzH3nPWvrKeNEJqu9bEwms-0-70895978904063cb4e51752c18c52e8c)
五、常用连续分布
1设随机变量X服从区间(2,5)上的均匀分布,求对X进行3次独立观测中,至少有2次的观测值大于3的概率.
解:在一次观测中,观测值大于3的概率为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image410.png?sign=1739496777-Qwxs2J24ecRn7e82ApDTOrkp4zsHX2fs-0-07a33a219e50fb96d42324f1bfbef61a)
设Y为此种观测(X>3)的次数,则Y~b(3,2/3),由此得
P(Y≥2)=1-P(Y=0)-P(Y=1)=1-(1/3)3-3×(2/3)×(1/3)2=20/27
2在(0,1)上任取一点记为X,试求P(X2-3X/4+1/8≥0).
解:由x2-3x/4+1/8=0解得x1=0.25,x2=0.5.因为X~U(0,1),又因为二次函数y=x2-3x/4+1/8是开口向上的,故有
{X2-3X/4+1/8≥0}={0≤X≤0.25}∪{0.5≤X≤1}
所以
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image411.png?sign=1739496777-0g7JICqjjz6PBgMekzIFkE5wuomRkgaP-0-46281b6a6559d2725658d5c1cf9367f5)
3设K服从(1,6)上的均匀分布,求方程x2+Kx+1=0有实根的概率.
解:方程x2+Kx+1=0有实根的充要条件是
{K2-4≥0}={K≤-2}∪{K≥2}
而K~U(1,6),因此所求概率为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image412.png?sign=1739496777-lc0e7NIumzG5xWsQ7rM3Taeivw5jNJLY-0-f4e4f8327bd58f6f785f706438fa06cb)
4若随机变量K~N(µ,σ2),而方程x2+4x+K=0无实根的概率为0.5,试求µ.
解:方程x2+4x+K=0无实根等价于16-4K<0,所以由题意知0.5=P(16-4K<0)=P(K>4)=1-Φ[(4-µ)/σ],由此得知µ=4.
5设流经一个2Ω电阻上的电流I是一个随机变量,它均匀分布在9A至11A之间.试求此电阻上消耗的平均功率,其中功率W=2I2.
解:因为I~U(9,11),所以平均功率为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image413.png?sign=1739496777-ECZLwWv6OIoVzMt1Y2snL5J7PaYnTxvj-0-9d27f31c7f0567b6e38ba7c2ea70644f)
6某种圆盘的直径在区间(a,b)上服从均匀分布,试求此种圆盘的平均面积.
解:记X为圆盘的直径,则圆盘的面积为Y=πX2/4,所以平均面积为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image414.png?sign=1739496777-Kotpvxg8d91uCQLENG2DVi6ueoEnT5NL-0-4e2d5f66d789a9f0e06237dcb6e3cb97)
7设某种商品每周的需求量X服从区间(10,30)上均匀分布,而商店进货数为区间(10,30)中的某一整数,商店每销售1单位商品可获利500元;若供大于求则削价处理,每处理1单位商品亏损100元;若供不应求,则可从外部调剂供应,此时每1单位商品仅获利300元.为使商店所获利润期望值不少于9280元,试确定最少进货量.
解:设进货量为a,则利润为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image415.png?sign=1739496777-TnNPRxftUzANWclTzAd68eU7VOKFRPZi-0-fdf958694eea2c6e4e4536a5d4fd7093)
所以平均利润为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image416.png?sign=1739496777-sXqTGwHClYoRLaeZp3xAhBDRM5aK8oAY-0-2e2f3ba780404e27428bcc1eeeba3f07)
按照题意要求有
-7.5a2+350a+5250≥9280或-7.5a2+350a-4030≥0
解得,因此最少进货为21单位.
8统计调查表明,英格兰在1875年至1951年期间,在矿山发生10人或10人以上死亡的两次事故之间的时间T(以日计)服从均值为241的指数分布.试求P(50<T<100).
解:P(50<T<100)=F(100)-F(50)=e-50/241-e-100/241=0.1523
9若一次电话通话时间X(单位:min)服从参数为0.25的指数分布,试求一次通话的平均时间.
解:因为X~Exp(λ),其中λ=0.25.所以E(X)=1/λ=1/0.25=4min.
10某种设备的使用寿命X(以年计)服从指数分布,其平均寿命为4年.制造此种设备的厂家规定,若设备在使用一年之内损坏,则可以予以调换.如果设备制造厂每售出一台设备可赢利100元,而调换一台设备制造厂需花费300元.试求每台设备的平均利润.
解:令
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image418.png?sign=1739496777-ARQq043uvOnjH9hfC5F9eO3fcRxJGER8-0-c77c4318054d1be9857582b0ada5b17b)
即Y是一台设备在使用一年之内损坏的台数,显然Y~b(1,p),其中
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image419.png?sign=1739496777-bajGAgceEsFKOfaKVnC5bu58skRxNk8N-0-62c39590265ec54ecc204805c3b38132)
因为每台设备的利润为Z=100-300Y,所以每台设备的平均利润为
E(Z)=100-300E(Y)=100-300×0.2212=33.64(元)
11设顾客在某银行的窗口等待服务的时间X(以min计)服从指数分布,其密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image420.png?sign=1739496777-uJhLxO9efw1QI9d4MGaeevqdNWlTFmQ3-0-5bf056d78417bdebb113e3d23e1a7e4e)
某顾客在窗口等待服务,若超过10min,他就离开.他一个月要到银行5次,以Y表示一个月内他未等到服务而离开窗口的次数,试求P(Y≥1).
解:因为Y~b(5,p),其中p=P(X>10)=e-2,所以得
P(Y≥1)=1-P(Y=0)=1-(1-p)5=1-(1-e-2)5=0.5167
12某仪器装了3个独立工作的同型号电子元件,其寿命(单位:h)都服从同一指数分布,密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image421.png?sign=1739496777-5PQ8PLQrlZV2Iy7PZIRTkIg7iSsWb54e-0-905e03ff787dfef81d5c89f0cd926ed3)
试求:此仪器在最初使用的200h内,至少有一个此种电子元件损坏的概率.
解:设Y为仪器在最初使用的200h内,损坏的元件个数,则Y~b(3,p),其中
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image422.png?sign=1739496777-Tj3VfGfSAod83kfGLW5Jjnta6q1nIH6m-0-7050a1e7ce81ac94f793c132ecc827fd)
所以至少有一个电子元件损坏的概率为
P(Y≥1)=1-P(Y=0)=1-(1-p)3=1-[1-(1-e-1/3)]3=1-e-1=0.6321
13设随机变量X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image423.png?sign=1739496777-zqlkU8g0OVIO3dpSyQRxw0pA86iHBBXJ-0-bac45f6812f8caa3a4f608b6a399df78)
试求k,使得P(X>k)=0.5.
解:因为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image424.png?sign=1739496777-xElgw8UcDBsuFd6SnG2MmAgcThfPilbE-0-8266b31c2a3a13447d392d832117bb4b)
由此解得k=ln2/λ.
14设随机变量X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image425.png?sign=1739496777-X0fpWmapLGk139d4hC9URIWrps5v3KfR-0-82a72a178f70a016308be8bca73d35d3)
若P(X≥k)=2/3,试求k的取值范围.
解:由题设条件2/3=P(X≥k)=1-P(X<k),知F(k)=1/3.又由p(x)得分布函数如下
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image426.png?sign=1739496777-fxLP4bkzWLjb2G1vqUZZ4v20CAi2IaCa-0-9f505369b90492cc82158df5c34fe357)
F(x)的图形如图2-2-8所示.
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image427.jpg?sign=1739496777-ACQo6K7ygjm4Iw6qXw4hsdRDoHi0M11S-0-7e62a94e710928c91a4482aabe7c9596)
图2-2-8
由此得1≤k≤3.
15写出以下正态分布的均值和标准差.
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image428.png?sign=1739496777-K63NZdBKXsHow7ZJfzNUQUjI5qFDFApg-0-d6ebd5025ef79e3172fc4107b8059c96)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image429.png?sign=1739496777-bNB8DnKfZQQpHHq1ctBAJ1ocWEiwpWq2-0-18de4bbcb6a7268e4bbfd82f03d1a8f1)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image430.png?sign=1739496777-1nUaTuQWp82x6ER5DK5reXqG9tvdsy6F-0-edaf8893da3e2ae1946f01f367cc11fc)
解:对p1(x)有
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image431.png?sign=1739496777-1tIi1isR9qjJ6k5F8FCWdaL4JI1F0B0F-0-19ea8fd83708d4521f828d61354c54fa)
所以p1(x)的均值μ1=-2,标准差
对p2(x)有
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image433.png?sign=1739496777-F0Bxca3A0WcEOTF4PDN3LgTUGhGxygSf-0-70ad792fbf7ab20640779f9f0b520ba0)
所以p2(x)的均值μ2=0,标准差σ2=1/2
对p3(x)有
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image434.png?sign=1739496777-bhznw9xABEkSU3p4vd3cSf6tbaWZ2pK3-0-03ff238587a82f7302b497b3075bc2ea)
所以p3(x)的均值μ3=0,标准差
16某地区18岁女青年的血压X(收缩压,以mm-Hg计)服从N(110,122).试求该地区18岁女青年的血压在100至120的可能性有多大?
解:P(100<X<120)=Φ[(120-110)/12]-Φ[(100-110)/12]=Φ(5/6)-Φ(-5/6)=2Φ(5/6)-1=0.5950,其中Φ(5/6)=Φ(0.833)=0.7975是用内插法得到的.
17某地区成年男子的体重X(kg)服从正态分布N(μ,σ2).若已知P(X≤70)=0.5,P(X≤60)=0.25.
(1)求μ与σ各为多少?
(2)若在这个地区随机地选出5名成年男子,问其中至少有两人体重超过65kg的概率是多少?
解:(1)由0.5=P(X≤70)=Φ[(70-μ)/σ],知(70-μ)/σ=0
由此解得μ=70.又由
0.25=P(X≤60)=Φ[(60-70)/σ]=Φ(-10/σ)=1-Φ(10/σ)
即0.75=Φ(10/σ),查表知10/σ=0.675,由此解得σ=14.81.
(2)记Y为选出的5名成年男子中体重超过65kg的人数,则Y~b(5,p),其中
p=P(X>65)=Φ[(70-65)/14.81]=Φ(0.3376)=0.6324
所以“5名中至少有两人体重超过65kg”的概率为
P(Y≥2)=1-0.36765-5×0.36764×0.6324=0.94
18由某机器生产的螺栓的长度(cm)服从正态分布N(10.05,0.062),若规定长度在范围l0.05±0.12内为合格品,求螺栓不合格的概率.
解:记螺栓的长度为X,则
P(螺栓不合格)=1-P(10.05-0.12≤X≤10.05+0.12)=2-2Φ(0.12/0.06)=2-2×0.9772=0.0456
19某地抽样调查结果表明,考生的外语成绩(百分制)近似地服从μ=72的正态分布,已知96分以上的人数占总数的2.3%,试求考生的成绩在60分至84分之间的概率.
解:记X为考生的外语成绩,由题设条件知X~N(72,σ2),其中σ未知,但由题设条件知0.023=P(X>96)=1-Φ[(96-72)/σ],即Φ(24/σ)=0.977
因此查表知24/σ=2,由此解得σ=12,从而得X~N(72,122),由此所求概率为
P(60<X<84)=2Φ(1)-1=2×0.8413-1=0.6826.
20设随机变量X~N(3,22),(1)求P(2<X≤5);(2)求P(|X|>2);(3)确定c使得P(X>c)=P(X<c).
解:(1)P(2<X≤5)=Φ(1)-Φ(-0.5)=Φ(1)-1+Φ(0.5)=0.5328.
(2)P(|X|>2)=P(X>2)+P(X<-2)=1-Φ(-0.5)+Φ(-2.5)=Φ(0.5)+1-Φ(2.5)=0.6977.
(3)因为1=P(X>c)+P(X<c),所以由题设条件P(X>c)=P(X<c)得P(X<c),进而有(c-3)/2=0.由此得c=3.
21设随机变量X~N(4,32),(1)求P(-2<X≤10);(2)求P(X>3);(3)设d满足P(X>d)≥0.9,问d至多为多少?
解:(1)P(-2<X≤10)=Φ(2)-Φ(-2)=2Φ(2)-1=2×0.9772-1=0.9544.
(2)P(X>3)=1-Φ(-1/3)=Φ(1/3)=0.6304.
(3)由0.9≤P(X>d)=Φ((4-d)/3)查表得(4-d)/3≥1.282,由此解得d≤0.154,故d至多取0.154.
22测量到某一目标的距离时,发生的随机误差X(m)具有密度函数
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image436.png?sign=1739496777-NsmMGgJ5nYL6UKlUUi0L7BZcXmkHaV79-0-57db92aaa93154da1f16f53abaf53981)
求在三次测量中,至少有一次误差的绝对值不超过30m的概率.
解:记Y为三次测量中误差的绝对值不超过30m的次数,则Y~b(3,p),其中p为“一次测量中误差的绝对值不超过30m”的概率,由X~N(20,402).可知
p=P(-30≤X≤30)=Φ(10/40)-Φ(-50/40)=Φ(0.25)-1+Φ(1.25)=0.4931
所以“三次测量中至少有一次误差的绝对值不超过30m”的概率为
P(Y≥1)=1-P(Y=0)=1-(1-p)3=1-0.50693=0.8698
23从甲地飞往乙地的航班,每天上午10:10起飞,飞行时间X服从均值是4h,标准差是20min的正态分布.
(1)该机在下午2:30以后到达乙地的概率是多少?
(2)该机在下午2:20以前到达乙地的概率是多少?
(3)该机在下午1:50至2:30之间到达乙地的概率是多少?
解:设时间单位为min,则X~N(240,202)
(1)所求概率为
P(X≥260)=1-Φ((260-240)/20)=1-Φ(1)=1-0.8413=0.1587
(2)所求概率为
P(X≤250)=Φ((250-240)/20)=Φ(0.5)=0.6915
(3)所求概率为
P(220≤X≤260)=2Φ(1)-1=2×0.8413-1=0.6826
24某单位招聘员工,共有10000人报考.假设考试成绩服从正态分布.且已知90分以上有359人,60分以下有1151人.现按考试成绩从高分到低分依次录用2500人,试问被录用者中最低分为多少?
解:记X为考试成绩,则X~N(μ,σ2),由频率估计概率知
0.0359=P(X>90)=1-Φ[(90-μ)/σ]
0.1151=P(X<60)=1-Φ[(60-μ)/σ]
上面两式可改写为
0.9641=Φ[(90-μ)/σ]
0.8849=Φ[(μ-60)/σ]
再查表得
(90-μ)/σ=1.8,(μ-60)/σ=1.2
由此解得μ=72,σ=10.设被录用者中最低分为k,则由
0.25=P(X≥k)=1-Φ[(k-72)/10],或0.75=Φ[(k-72)/10]
查表得(k-72)/10≥0.675,从中解得k≥78.75,因此取被录用者中最低分为78.75分即可.
25设随机变量X服从正态分布N(60,32),试求实数a,b,c,d使得X落在如下五个区间中的概率之比为7:24:38:24:7.
(-∞,a],(a,b],(b,c],(c,d],(d,+∞]
解:由题设条件知
P(X≤a)=0.07;P(X≤b)=0.31;P(X≤c)=0.69;P(X≤d)=0.93
所以
(1)由于P(X≤a)=Φ((a-60)/3)=0.07,即Φ((60-a)/3)=0.93,因此查表得(60-a)/3=1.48,由此得a=55.56.
(2)由于P(X≤b)=Φ((b-60)/3)=0.31,即Φ((60-b)/3)=0.69,因此查表得(60-b)/3=0.495由此得b=58.5.
(3)由P(X≤c)=0.69,查表得(c-60)/3=0.495,由此得c=61.5.
(4)由P(X≤d)=0.93,查表得(d-60)/3=1.48,由此得d=64.44.
26设随机变量X与Y均服从正态分布,X服从N(μ,42),Y服从N(μ,52)试比较以下p1和p2的大小.
p1=P{X≤μ-4},p2=P{Y≥μ+5}
解:因为
p1=P{X≤μ-4}=Φ(-1)=1-Φ(1)
p2=P{Y≥μ+5}=1-Φ(1)
所以p1与p2一样大小.
27设随机变量X服从正态分布N(0,σ2),若P(|X|>k)=0.1,试求P(X<k).
解:由题设条件知
0.9=P(-k≤X≤k)=Φ(k/σ)-Φ(-k/σ)=Φ(k/σ)-1
由此得Φ(k/σ)=0.95所以P(X<k)=Φ(k/σ)=0.95.
28设随机变量X服从正态分布N(μ,σ2),试问:随着σ的增大,概率P(|X-μ|<σ)是如何变化的?
解:因为
P(|X-μ|<σ)=P(-σ<X-μ<σ)=Φ(1)-Φ(-1)=0.6826
所以随着σ的增大,概率P(|X-μ|<σ)是不变的.
29设随机变量X服从参数为μ=160和σ的正态分布,若要求P(120<X≤200)≥0.90,允许σ最大为多少?
解:由题设条件0.90≤P(120<X≤200)=2Φ(40/σ)-1,得Φ(40/σ)≥0.95,从而查表得40/σ≥1.645,或σ≤24.32,这表明矿最大为24.32.
30设随机变量X~N(μ,σ2),求E|X-μ|
解:利用变换t=(x-μ)/σ及偶函数性质可得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image437.png?sign=1739496777-nGTPUPEXJAkFgcGEE8pXPxpIBoJfQgcS-0-f18e5d11b54bdfc24c910fc35e4e7f14)
31设X~N(0,σ2),证明:
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image438.png?sign=1739496777-pdTytlH6AfEVYS5urw6OeGxftqx5CnYV-0-c387a87a66397f89afe220a800c3a95c)
证:在上题中令μ=0即可得结论.
32设随机变量X服从伽玛分布Ga(2,0.5),试求P(X<4).
解:伽玛分布Ga(2,0.5)的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image439.png?sign=1739496777-GlTUl5yG0QafhcrhmSWUZhLeHHeGTRPr-0-22ab4b1db4cf37fa758e0c7a5323b933)
由于Γ(2)=1,因此所求概率为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image440.png?sign=1739496777-BLvICyaBEdd1fxIDt4bRtGS3zcbzegoo-0-eff7c7cc095285a1b163a8d2824c884c)
33某地区漏缴税款的比率X服从参数a=2,b=9的贝塔分布,试求此比率小于10%的概率及平均漏缴税款的比率.
解:贝塔分布Be(2,9)的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image441.png?sign=1739496777-e82XdXAANXcPLE6KGSoSOImNJavurlNx-0-2a98a930e9172b058cf2c893261364be)
因为Γ(2+9)=10!,Γ(2)=1,Γ(9)=8!,所以Γ(2+9)/Γ(9)=90,因此
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image442.png?sign=1739496777-7vh9VUO6EL6GGcu9kvDRg1beeIRPvEuY-0-a19f6eadbe2d3630e05bbc8456f8babe)
E(X)=a/(a+b)=2/11=0.1818.
34某班级学生中数学成绩不及格的比率X服从a=1,b=4的贝塔分布,试求P(X>E(X)).
解:贝塔分布Be(1,4)的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image443.png?sign=1739496777-5PAF6AaCkJdb2s6RMnG2uwCDO929YW8i-0-a032ae1ac71aab6bb0f3d50ad4cd2288)
且由E(X)=a/(a+b)=1/5=0.2,知
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image444.png?sign=1739496777-laBa6B6OL6wcCV6Kczm1ScHf65mMmYVc-0-5f0a4136de152f3207f41f5071c57612)
六、随机变量函数的分布
1已知离散随机变量X的分布列为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image445.png?sign=1739496777-gUkF69jgIIxjJRfIUG0RXHbY4jx1xn6d-0-687c1bcb71718dc01440706a40454b20)
试求Y=X2与Z=|X|的分布列.
解:
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image446.png?sign=1739496777-oIjPNGE1pF6EeZkuX0tzLNUMV92wM5mN-0-82d3fa852919315bf8cf3b92ca497f27)
2已知随机变量X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image447.png?sign=1739496777-jptp3cmZWiBOyAIuJTcRiYYw2Uzgwtku-0-0e332ffc3968389bc87184f346211a53)
试求随机变量Y=g(X)的概率分布,其中
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image448.png?sign=1739496777-dCgADD90Y0AosEr40zf9yGyOH5hWVIZN-0-28d2719c9d74164007ef4177840f895f)
解:因为p(x)为偶函数,所以可得P(X<0)=P(X≥0)=0.5,由此得
P(Y=-1)=P(X<0)=P(X≥0)=P(Y=1)=0.5
所以Y的分布列为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image449.png?sign=1739496777-FE1MvJaaCCoQ8qggKuee0NeBlNxPcEPx-0-1d8ee8da5270d4abf430432a8ba73b94)
3设随机变量X服从(-1,2)上的均匀分布,记
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image450.png?sign=1739496777-TI5b8MzVFIzIsx7OUUGE1nCzvi9yMKF8-0-1e82dc650c6ce416e5722b8920109d15)
试求Y的分布列.
解:因为P(Y=-1)=P(X<0=1/3),P(Y=1)=P(X≥0)=2/3,所以Y的分布列为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image451.png?sign=1739496777-cDNFNoECIdbXeh6CqzwW2CJSnnqtnZgT-0-77a3fbce7446010a1130e553be04b300)
4设X~U(0,1),试求1-X的分布.
解:X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image452.png?sign=1739496777-GbODz1xcaFcpV6Si9YQuT6mQHEPzOXrO-0-0c33c4402a960d3a64f8d2a897011b14)
因为y=g(x)=1-x在(0,1)上为严格单调减函数,其反函数为x=h(y)=1-y.且有h′(y)=-1,所以Y=1-X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image453.png?sign=1739496777-Y1rWZazxjmt7WK2aCYhQ7kviaoICT97o-0-2ce283183873a45173107b8b5fd138af)
这表明:当X~U(0,1)时,1-X与X同分布.
5设随机变量X服从(-π/2,π/2)上的均匀分布,求随机变量Y=cosX的密度函数pY(y).
解:X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image454.png?sign=1739496777-1tsvhFxGkHCfAN0zXmQ4WHOJRCef74HM-0-5233c6bc0319151ad5771d80d5fbd165)
由于X在(-π/2,π/2)内取值,所以Y=cosX的可能取值区间为(0,1).在Y的可能取值区间外,pY(y)=0.
当0<y<1时,使{Y≤y}的x取值范围为两个互不相交的区间Δ1和Δ2,其中Δ1=(-π/2,-arccosy),Δ2=(arccosy,π/2),如图2-2-9所示.
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image455.jpg?sign=1739496777-Zvwti6DCX3I6nJs2cK4UGX5gEtnNwEvR-0-f44a10f09687a99f6ab0eefe6ee56f57)
图2-2-9
故
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image456.png?sign=1739496777-9rm45pZ0dPeMxBPXLVYgamWm5qNYiujw-0-6d83be4f620c5ac712b6911c3a22f030)
在上式两端对y求导,得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image457.png?sign=1739496777-HbrnkRbI2yCAxhCo7JNzAzYUEBZPqihV-0-2640d42d43bfbea78cc872e5cf2dd607)
即
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image458.png?sign=1739496777-3ZTrj2od05CpjkAKlTPWs5E7uJzChONB-0-57fb15726ac629f0762d493698bc5c91)
6设圆的直径服从区间(0,1)上的均匀分布,求圆的面积的密度函数.
解:设圆的直径为X,则圆的面积Y=πX2/4,而X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image459.png?sign=1739496777-GIajJa6uveJWnRsBT22Ovf2BrCPkpBIu-0-8e0d2f9a423ed016fe20d75a9f4cfcd3)
因为y=g(X)=πX2/4在区间(0,1)上为严格单调增函数,其反函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image460.png?sign=1739496777-A8MocFPHBY5bzM42kyCMke9BUd3O1VQY-0-b7d83087b6982c6be61aa41535292dae)
且
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image461.png?sign=1739496777-lUpSJyhdVYZ0N74DjdAoNAilze2som65-0-7a9abcee9ea1412056d3bf4e79aa5523)
所以圆面积Y=πX2/4的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image462.png?sign=1739496777-APkTiqpogATwaqNGPI5oqWvF3pyND3fY-0-891fef502e6e67e9846102a282a4ad20)
7设随机变量X服从区间(1,2)上的均匀分布,试求Y=e2X的密度函数.
解:X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image463.png?sign=1739496777-lpJfLvpDRNiHPwaLWdLwnKOV4APTf8Vc-0-e83fa01b15dd66c15e6a49f6a573d267)
由于X在(1,2)内取值,所以Y=e2X的可能取值区间为(e2,e4),且y=g(x)=e2x在区间(1,2)上为严格单调增函数,其反函数为x=h(y)=(lny)/2,且h′(y)=1/(2y),所以Y=e2X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image464.png?sign=1739496777-iJUL1aotXhiG27JjN9hrm9y29nGO9Ox3-0-6ab3e51058f317b7945662c4a189723a)
8设随机变量X服从区间(0,2)上的均匀分布.
(1)求Y=X2的密度函数;
(2)P(Y<2).
解:X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image465.png?sign=1739496777-CbpkYKP7SuTgVPCk3ZG2XHgIc9TB5MUL-0-bbe1c9ce83185062f94eb40c2aafdf36)
(1)Y=X2的可能取值区间为(0,4).因为y=g(x)=x2在区间(0,2)上为严格单调增函数,其反函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image466.png?sign=1739496777-wUUsKICPRJmAcYblLCHvanPfi1nunkhn-0-d2c231425a82d9889216d67b0c91198e)
且
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image467.png?sign=1739496777-hzgKm8KCVKTk2rXA9ygwlhAX9LUon3ge-0-ea9df87177c952ea4ad6d4b3420d35b3)
所以Y=X2的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image468.png?sign=1739496777-Sasj5xHq5VlLfmwZYqhYizUVBGl2xWp4-0-98487b10c99a93cd2b49fc596d16cce6)
(2)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image469.png?sign=1739496777-3bNUawrcnNKfiRysFZmHACxLWExtAOhI-0-c051a3b19cbed3e43eef6de1afbf0f2d)
9设随机变量X服从区间(-1,1)上的均匀分布,求:
(1)P(|x|>1/2)
(2)Y=|X|的密度函数.
解:(1)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image470.png?sign=1739496777-ecjSo3LfXK3WIIWMR6rF6QUmtlXYZ0wn-0-b98ed52590fcc4ccc8e8d979170c8b9c)
(2)FY(y)=P(|X|≤y),当y<0时,FY(y)=0;当y≥1时,FY(y)=1;当0≤y<1时,
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image471.png?sign=1739496777-VPrdJsyadSM3bSeEnwK89jTO2HrAuam5-0-8fc7e7310e8243296e208ffb7ee06c8b)
所以得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image472.png?sign=1739496777-tw7WqhuW0YjuF4972ICm59N8g6LYIXjn-0-58b405c92276b8bbfc817ad162df4797)
10设随机变量X服从(0,1)上的均匀分布,试求以下Y的密度函数:
(1)Y=-2lnX;
(2)Y=3X+1
(3)Y=eX
(4)Y=|lnX|
解:X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image473.png?sign=1739496777-WRPVxWPHF6kEQX3ZDKhtOXkejB3mEBAJ-0-ee2d49ac5a7dc19e644beee869ac73b9)
(1)因为Y的可能取值区间为(0,+∞),且y=g(x)=-2lnx在区间(0,1)上为严格单调减函数,其反函数为x=h(y)=e-0.5y,且h′(y)=-0.5e-0.5y.所以Y=-2lnX的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image474.png?sign=1739496777-xJfAQ3iDIPv3RWAOqN5FNuelCB1N7CTl-0-9c98e0fc2504dffa09f74d589c8611ef)
(2)因为Y的可能取值区间为(1,4),且y=g(x)=3x+1在区间(0,1)上为严格单调增函数,其反函数为x=h(y)=(y-1)/3.且h′(y)=1/3,所以Y=3X+1的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image475.png?sign=1739496777-OeqRkx7ysNW6Pw5cr2QeWnjRsMW3B7RY-0-aff95964a4cad93e68b21ede3610c14c)
(3)因为Y的可能取值区间为(1,e),且y=g(x)=ex在区间(0,1)上为严格单调增函数,其反函数为x=h(y)=lny.且h′(y)=1/y所以Y=eX的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image476.png?sign=1739496777-X63ILCeIz8gb9Tx8uoGQxc06QR2IYTIo-0-e924dccb6d610505b79a5ad87accd5e1)
(4)因为Y的可能取值区间为(0,+∞),且y=|lnx|在区间(0,1)上为严格单调减函数,其反函数为x=h(y)=e-y,且h′(y)=-e-y所以Y=|lnX|的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image477.png?sign=1739496777-41g27lDw9FtdUUuCsf4S33QDHUSCrjDX-0-87c7e524a92a9a1667ab9145f37cfe97)
11设随机变量X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image478.png?sign=1739496777-jQ8yb5CJ84iBiYjBjq5AFvWMce42eHaj-0-fa08806f9920fbbf805946d4483b1a34)
试求下列随机变量的分布:
(1)Y1=3X;
(2)Y2=3-X;
(3)Y3=X2
解:(1)因为Y1的可能取值区间为(-3,3),且y=g(x)=3x在区间(-1,1)上为严格单调增函数,其反函数为x=h(y)=y/3,且h′(y)=1/3,所以Y1=3X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image479.png?sign=1739496777-VaFJj8qufxZDBKB0LnSH0Z6at8C7Yy8F-0-f3eda7c102d02c136080e5c3aee44b46)
(2)因为Y2的可能取值区间为(2,4),且y=g(x)=3-x在区间(-1,1)上为严格单调减函数,其反函数为x=h(y)=3-y,且h′(y)=-1,所以Y2=3-X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image480.png?sign=1739496777-FDnOR69tYHmOGs1afghLHJif7p8KVqTi-0-837a0bf8cc7ca75f3c8098239025cfd9)
(3)因为Y3的可能取值区间为(0,1),所以在区间(0,1)外,Y3的密度函数为pY(y)=0.而当0<y<1时,Y3的分布函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image481.png?sign=1739496777-bXFmwbeHEVDddAmoIUDerMc2MN7RWk4P-0-e0bbe14a29620c5aca7b8a374d52b7c8)
上式两边关于y求导,得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image482.png?sign=1739496777-feiVK89TGJYi5hAFbZx5Y7pyMCiN6WwI-0-26e1261b35bb7ed16fa71a318201232c)
即
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image483.png?sign=1739496777-4SKekhPs5YULdfeg5XTMBVKRh5Pk7jQV-0-32a589ed3a1beb3d8ee5bf87baa6b361)
这是贝塔分布Be(3/2,1).
12设X~N(0,σ2),求Y=X2的分布.
解:因为Y=X2的可能取值区间为(0,+∞),所以当y≤0时,Y的密度函数为pY(y)=0而当y>0时,Y的分布函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image484.png?sign=1739496777-tCE9o6tgfa0mB7pF6iKDmluIO01Nq1XJ-0-f770015055b8524690804671c4cb89ed)
对上式两边关于y求导,得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image485.png?sign=1739496777-OHTMPEa670RpFyafj95upfoeLxJ2gZj7-0-7401b2a8d253328514d5bbfb3c079271)
即
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image486.png?sign=1739496777-GDAY74SjbNsR9hdNb2zv9s79MOrzH9Bd-0-d48d68530a01a884a82af615f1705493)
这是伽玛分布Ga(1/2,1/(2σ2))
13设X~N(μ,σ2),求Y=eX的密度函数、数学期望与方差.
解:因为Y=eX的可能取值范围为(0,+∞),且y=g(x)=ex为严格单调增函数,其反函数为x=h(y)=lny,及h′(y)=1/y,所以Y的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image487.png?sign=1739496777-CFGjqqqN6FQNYcMQW1RKLX102fWSq1Sy-0-5e03c37d8f3e2b919fb7a78116ff490b)
这是对数正态分布LN(μ,σ2),为求其数学期望,采用线性变换t=(x-μ)/σ可得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image488.png?sign=1739496777-BPeHVYU4pHlVRQfU9V020nXYVtujmOP7-0-a3fb8a4b7b9da69db829cdef19c0d2f0)
上式最后一个等式成立是因为积分中的被积函数是N(σ,1)的密度函数之故.
为求Y的方差,先求E(Y2).施行相同的线性变换,可得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image489.png?sign=1739496777-NnsN56e3SklpMcjTtaQTqwm6UVPRm1DL-0-633777239e47238a41718e00f80fd29e)
上式最后一个等式成立是因为积分中的被积函数是N(2σ,1)的密度函数之故.由此得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image490.png?sign=1739496777-p8BzqcjPPpvNy4WNtFSGnBfUNOy1ea84-0-9f28274c5cd628ec1016ca5fb11bdfa6)
14设随机变量X服从标准正态分布N(0,1),试求以下Y的密度函数:
(1)Y=|X|;
(2)Y=2X2+1.
解:(1)Y=|X|的可能取值范围为(0,+∞),所以当y≤0时,Y的密度函数为pY(y)=0;当y>0时,Y的分布函数为
FY(y)=P(|X|≤y)=P(-y≤X≤y)=FX(y)-FX(-y)
对上式两端关于y求导得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image491.png?sign=1739496777-qrMeAn6G5sOVFfY6am8K1vV8dH7tQCeK-0-7938a5d38137fbc6d0f2394da745a63c)
所以Y的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image492.png?sign=1739496777-JB7vRkUwZ5Cp65mr5H2mslfXsnuXTbPq-0-eeab32befdb6d7734bfbd2684d59c72f)
这个分布被称为半正态分布.
(2)Y=2X2+1的可能取值范围为(1,+∞),所以当y≤1时,Y的密度函数为pY(y)=0;当y>1时,Y的分布函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image493.png?sign=1739496777-rvNYl6w31VB0cExX5H4F1kdnNt23qMtn-0-637d1d01d6fd9a50aac087d410f8ea3c)
对上式两端关于y求导得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image494.png?sign=1739496777-vBPPSOffIQCWNI2KHQWbuYiw4pgbFras-0-67cc5d19364b154f1fb769d2eaf7b821)
所以Y的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image495.png?sign=1739496777-sfhYGE4WrZFYigoVsSN8KxBWexEx5R4X-0-59c19b2c1227e0caaaec2e654792fbcd)
15设随机变量X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image496.png?sign=1739496777-o9RSYNymjtTUcHu31b80zFhr1Pv8IG0d-0-81ae5b3ed51ff85c2edff5d1731075aa)
试求以下Y的密度函数:
(1)Y=2X+1
(2)Y=eX
(3)Y=X2
解:(1)因为Y=2X+1的可能取值范围是(1,+∞).且y=g(x)=2x+1是严格单调增函数,其反函数为x=h(y)=(y-1)/2,及h′(y)=1/2,所以Y的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image497.png?sign=1739496777-Jy05CS24zeilhCRmS2v4KTWI15jW2pGi-0-e8a08b9ccadefe2828bffe766cc46435)
(2)因为Y=eX的可能取值范围是(1,+∞).且y=g(x)=ex是严格单调增函数,其反函数为x=h(y)=lny,及h′(y)=1/y,所以Y的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image498.png?sign=1739496777-sMArRhAaSDMaIWcsvf6ZfdMh1n9Rc7OT-0-4ec7d31b1f865e0fba3354541ccabdb4)
(3)因为Y=X2的可能取值范围是(0,+∞),且y=g(x)=x2在(0,+∞)上是严格单调增函数,其反函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image466.png?sign=1739496777-wUUsKICPRJmAcYblLCHvanPfi1nunkhn-0-d2c231425a82d9889216d67b0c91198e)
及
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image499.png?sign=1739496777-QVI4BnsIF9cd8g00EhDP87D0SZSVgyYM-0-c6375fcbfa2b53bd892b625915fcbabe)
所以Y的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image500.png?sign=1739496777-M2ku2TGjw7bVQzIhentd88N2ftI9dL53-0-8d8f4c5839bc3dd751e75f9d795f9342)
这是韦布尔分布的特例.一般韦布尔分布(记为W(m,η))的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image501.png?sign=1739496777-mamSt34f5rgSWsKzM8J6vj8zR95OjADm-0-1f2ff790755af6a73d3f8efe5c55e404)
本题结论就是m=1/2,η=1时的韦布尔分布形(1/2,1).
16设随机变量X服从参数为2的指数分布,试证:Y1=e-2X和Y2=1-e-2X都服从区间(0,1)上的均匀分布.
证:因为X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image502.png?sign=1739496777-iEaB98Dn7VPH5zJ1jpd2knbec9zh9GDs-0-9380fc0186b8e2e2f8eaea6fd91c5103)
又因为Y1的可能取值范围是(0,1),且y1=e-2x是严格单调减函数,其反函数为x=h(y1)=-0.5lny1,h′(y1)=-0.5/y1,所以Y1的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image503.png?sign=1739496777-7e3ySj8RV8wvgFM3wipXChPwv6TDvT8B-0-594854a08a86308e7c37fa0c4e486b74)
即Y1~U(0,1)又由前面第4题,知Y2=1-e-2X=1-Y1也服从区间(0,1)上的均匀分布.结论得证.
17设X~LN(μ,σ2),试证:Y=lnX~N(μ,σ2)
证:因为X的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image504.png?sign=1739496777-ofsoqmUnjlOqbzKdJyLq9BsOEHu2Hu80-0-333a072a84304ab621e063091dbae28f)
又因为Y=lnX的可能取值范围为(-∞,+∞).且y=g(x)=lnx是区间(0,+∞)上的严格单调增函数,其反函数为x=h(y)=ey,h′(y)=ey.所以Y的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image505.png?sign=1739496777-QJf4pMNhBOO7yqX5JRnbiyOHLyjJnmJy-0-61ef7cba7078a72c86d15f17c678b544)
这正是N(μ,σ2)的密度函数.
18设Y~LN(5,0.122),试求P(Y<188.7)
解:P(Y<188.7)=P(lnY<ln188.7)=Φ[(5.24-5)/0.12]=Φ(2)=0.9772
七、分布的其他特征数
1设随机变量X~U(a,b),对k=1,2,3,4,求μk=E(XK)与νk=E(X-E(X))k,进一步求此分布的偏度系数和峰度系数.
解:因为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image506.png?sign=1739496777-nf6ABSqsQioJWNYJUw89jF9iCZQVVUAN-0-381c14553db1eb603e5eb17382ffca90)
所以
μ1=E(X)=(a+b)/2
μ2=E(X2)=(a2+ab+b2)/3
μ3=E(X3)=(a3+a2b+ab2+b3)/4
μ4=E(X4)=(a4+a3b+a2b2+ab3+b4)/5
ν1=E(X-E(X))=0
ν2=E(X-E(X))2=Var(X)=(a+b)2/12
ν3=μ3-3μ2μ1+2μ13=0
ν4=μ4-4μ3μ1+6μ2μ12-3μ14=(a+b)4/80
偏度系数和峰度系数分别为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image507.png?sign=1739496777-hQqjegRlmkUfZ8NbWX4acuJSC5ul02XH-0-c0864d1716a2ae7fc66822861dc54a05)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image508.png?sign=1739496777-XmEqJhpImVhVkCFPGON1zHVCmHDX7VED-0-8e46e2f0750190affc09366f8201363b)
注:上述βs,βk与a,b无关,这表明:任一均匀分布的偏度为0,峰度为-1.2.
2设随机变量X~U(0,a),求此分布的变异系数.
解:因为E(X)=a/2,Var(X)=a2/12,所以此分布的变异系数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image509.png?sign=1739496777-dTfTX7mQ2W9kWzbj6YHD84AfziSvFSmK-0-5ba965dcd1dee256d8c8d300e0ec4922)
3求以下分布的中位数:
(1)区间(a,b)上的均匀分布;
(2)正态分布N(μ,σ2)
(3)对数正态分布LN(μ,σ2)
解:(1)从中解得x0.5=(a+b)/2
(2)记X~N(μ,σ2),由P(X≤μ)≈Φ[(μ-μ)/σ]=0.5,可得x0.5=μ
(3)记Y~LN(μ,σ2),令X=lnY,则X~N(μ,σ2)又记x0.5为X的中位数,y0.5为Y的中位数.则由(2)知x0.5=μ.即
0.5=P(X≤μ)=P(lnY≤μ)=P(Y≤eμ)
由此得y0.5=eμ
4设X~Ga(α,λ),对k=1,2,3,求μk=E(Xk)与vk=E(X-E(X))k
解:因为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image511.png?sign=1739496777-4TGhQZ47l9XILovq81uIbYVym4eWnX81-0-cf1c59a142937df7ab1fc2e8193066cf)
所以
μ1=E(X)=α/λ,μ2=E(X2)=α(α+1)/λ2
μ3=E(X3)=α(α+1)(α+2)/λ3
v1=E[X-E(X)]=0,v2=Var(X)=α/λ2
v3=μ3-3μ2μ1+2μ13=2α/λ3
5设X~Exp(λ),对k=1,2,3,4,求μk=E(Xk)与vk=E(X-E(X))k进一步求此分布的变异系数、偏度系数和峰度系数.
解:因为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image512.png?sign=1739496777-iYTjJD0N7kB1nsOMJUJ864ocl8WVtcQT-0-4cd5ed2171149ad2382c1deafbed2d2b)
所以
μ1=E(X)=1/λ,μ2=E(X2)=2/λ2
μ3=E(X3)=6/λ3,μ4=E(X4)=24/λ4
ν1=E(X-E(X))=0,ν2=Var(X)=1/λ2
ν3=μ3-3μ2μ1+2μ13=2/λ3,ν4=μ4-4μ3μ1+6μ2μ12-3μ14=9/λ4
此分布的变异系数、偏度系数和峰度系数分别为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image513.png?sign=1739496777-GypVYJC2gHocAJgINxBqs1WFxP3cutAv-0-d50bc522154a6630896d83b10132accb)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image514.png?sign=1739496777-Fs2R04NfPBDIodyzvV1c0cfdPOyHnPOs-0-3db9fd706e9d6694b8ef94ccc61251bd)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image515.png?sign=1739496777-Jwb25l9KjfVpuII1ruzT5EzpY1gIohFd-0-a20dfb14176099a550b2438c2d87f5e9)
由此可见:指数分布的变异系数、偏度系数与峰度系数均与参数λ无关.它永远是正偏尖峰.
6设随机变量X服从正态分布N(10,9),试求x0.1和x0.9.
解:一般正态分布N(μ,σ2)的p分位数xp与标准正态分布的p分位数up,间满足关系式:xp=μ+σ×up.所以
x0.1=10+3u0.1=10+3×(-1.282)=6.154
x0.9=10+3u0.9=10+3×1.282=13.846
7设随机变量X服从双参数韦布尔分布,其分布函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image516.png?sign=1739496777-En72hqRYaoFamp14xUXpWoVLhdQo17b7-0-c151aaf52d39150ae462c01859f3320e)
其中η>0,m>0.试写出该分布的p分位数xp的表达式,且求出当m=1.5,η=1000时的x0.1,x0.5,x0.8的值.
解:因为p分位数xp满足
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image517.png?sign=1739496777-loRzISbRns7cKUVp5kfL5dEmJG6PViKm-0-f9585305b2b3e02324b1a34193f56494)
解之得
xp=η[-ln(1-p)]1/m
将m=1.5,η=1000代入上式,可得
x0.1=1000[-ln0.9]1/1.5=223.08
x0.5=1000[-ln0.5]1/1.5=783.22
x0.8=1000[-ln0.2]1/1.5=1373.36
8自由度为2的χ2分布的密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image518.png?sign=1739496777-qdMXP35Ra0FHQKbaNrPJQC45gRtGvrKP-0-f85e9e793b811e60ac6b13cf9930b804)
试求出其分布函数及分位数x0.1,x0.5,x0.8.
解:此分布的分布函数F(x)为:当x≤0时,F(x)=0;当x>0时,有
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image519.png?sign=1739496777-f7ixDjIlUvIMNLwgtpt9lwgFw4SaOXKB-0-5583178d49ac667f65998f24ac08e702)
所此分布的p分位数xp满足:
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image520.png?sign=1739496777-XaOolJaX2CoxtDduPA2R7klEaYDdw6nC-0-b4e77c5fcaab4e8f73a740be729e05e4)
从中解得xp=-2ln(1-p).由此得x0.1=-2ln0.9=0.211;x0.5=-2ln0.5=1.386;x0.8=-2ln0.2=3.219.
9设随机变量X的密度函数p(x)关于c点是对称的,且E(X)存在,试证:
(1)这个对称中心c既是均值又是中位数,即E(X)=x0.5=c
(2)如果c=0,则xp=-x1-p
证:(1)由p(x)关于c点对称可知:p(c+x)=p(c-x),-∞<x<+∞,因此
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image521.png?sign=1739496777-IvGi1MUW3dPvyyOOibK3E4LvwK8WbiU8-0-674bb8a711646f79413c47b174102ab0)
所以得E(X)=c,又由
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image522.png?sign=1739496777-jKPg1ufgIWVjsDuyGXyLBpkMBaQWqgWf-0-47653917f2306e01b55e9294983e1995)
所以2c-x0.5=x0.5,由此得x0.5=c
(2)当c=0时,有
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image523.png?sign=1739496777-ipTThFO4CWit2WgrzZCXS5CM6X52l6En-0-3d479306241de390ab580b562279970c)
又由F(-xp)=1-p即-xp=x1-p
由此得结论.
10试证随机变量X的偏度系数与峰度系数对位移和改变比例尺是不变的,即对任意的实数a,b(b≠0),Y=a+bX与X有相同的偏度系数与峰度系数.
解:因为E(Y)=E[a+bX]=a+bE(X),所以
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image524.png?sign=1739496777-XTtrYkINVuEc54ahCJTjo4oJmp5A5xqi-0-96bdee06798984d677f1519eca1f0198)
即Y与X有相同的偏度系数.又因为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image525.png?sign=1739496777-FSYlF3KmjzX89i23YruVxNLWHWoNgFmZ-0-e2092ce64fa2874f165925eee54ca4ca)
所以Y与X有相同的峰度系数.
11设某项维修时间T(单位:分钟)服从对数正态分布LN(μ,σ2)
(1)求p分位数tp;
(2)若μ=4.1271,求该分布的中位数;
(3)若μ=4.1271,σ=1.0364,求完成95%维修任务的时间.
解:因为T~LN(μ,σ2),所以X=lnT~N(μ,σ2)记xp为N(μ,σ2)的p分位数,up为N(0,1)的p分位数,则由p=P(X≤xp)=Φ[(xp-μ)/σ]=Φ(up),知xp=μ+σ·up
(1)因为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image526.png?sign=1739496777-pmHJ7SWIPQeVLuw9OezG81aXnPxweMCk-0-a3504de71cd60c87a9f0445792ca2fe7)
所以
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image527.png?sign=1739496777-iTkMrVUIO6TDnW4m3uFyCwVC1cpoUMme-0-939210c8e6b3c1743a763808415443bb)
(2)由本节习题3(3)知:t0.5=e4.1271=62
(3)因为u0.95=1.645,所以当μ=4.1271,σ=1.0364时.完成95%的维修任务的时间t0.95,为
t0.95=exp{4.1271+1.0364×1.645}=314
12某种绝缘材料的使用寿命T(单位:小时)服从对数正态分布LN(μ,σ2)若已知分位数t0.2=5000小时,t0.8=65000小时,求μ和σ.
解:由上一题知对数正态分布LN(μ,σ2)的平p分位数为
tp=exp{μ+σup}
其中up为标准正态分布N(0,1)的p分位数,所以根据题意有
5000=t0.2=exp{μ+σu0.2}
65000=t0.8=exp{μ+σu0.8}
将u0.2=-0.845,u0.8=0.845代入上面两式,可解得μ=9.799,σ=1.527
13某厂决定按过去生产状况对月生产额最高的5%的工人发放高产奖.已知过去每人每月生产额X(单位:kg)服从正态分布N(4000,602),试问高产奖发放标准应把生产额定为多少?
解:根据题意知,求满足P(X>k)=0.05的k,即k=x0.95其中x0.95,为分布N(4000,602)的95%分位数.又记up为标准正态分布N(0,1)的p分位数,则由xp=μ+σup及u0.95=1.645可得x0.95=4000+60×1.645=4098.7
因此可将高产奖发放标准定在生产额为4099kg.