![茆诗松《概率论与数理统计教程》(第2版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/80/27054080/b_27054080.jpg)
2.3 考研真题详解
一、选择题
1设随机变量X的概率密度f(x)满足f(1+x)=f(1-x),且
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image528.png?sign=1739497610-as0x5JyKp2QqW2uP8u00bNnvzE8pwO6p-0-5425ac0c09c05a40655a7b679ab2f2ca)
则P{X<0}=( ).[数一、数三2018研]
A.0.2
B.0.3
C.0.4
D.0.5
【答案】A
【解析】由f(1+x)=f(1-x),知f(x)的图像关于x=1对称,将f(x)看成随机变量X~N(1,σ2)的概率密度,则有P{x<1}=0.5,由
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image529.png?sign=1739497610-GncubNsdrPSedzyhJTLKu7ym4uixltqC-0-6e489d6eb7ea3dc6e5c052ae8ddffeb1)
可得P{0<x<2}=0.6,根据正态分布的对称性,所以P{0<x<1}=0.3,故P{X<0}=0.2.
2设随机变量X~N(μ,σ2)(σ>0),记p=P{X≤μ+σ2},则( ).[数一2016研]
A.p随着μ的增加而增加
B.p随着σ的增加而增加
C.p随着μ的增加而减少
D.p随着σ的增加而减少
【答案】B
【解析】因为p=P{X≤μ+σ2}=P{(X-μ)/σ≤σ}=F(σ),所以,p的大小与μ无关,随着σ的增大而增大.
3设随机变量X与Y相互独立,且X~N(1,2),Y~N(1,4),则D(XY)=( ).[数三2016研]
A.6
B.8
C.14
D.15
【答案】C
【解析】根据题意,X、Y相互独立,则
D(XY)=E(XY)2-(EXY)2=EX2EY2-(EXEY)2=[DX+(EX)2][DY+(EY)2]-(EXEY)2=14
4设总体X~B(m,θ),X1,X2,…,Xn为来自该总体的简单随机样本,为样本均值,则
( ).[数三2015研]
A.(m-1)nθ(1-θ)
B.m(n-1)θ(1-θ)
C.(m-1)(n-1)θ(1-θ)
D.mnθ(1-θ)
【答案】B
【解析】根据样本方差的性质:E(s2)=D(X),D(X)=mθ(1-θ),从而
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image532.png?sign=1739497610-9PhLqrphMX5WW2DmAzFSolLD50xJxore-0-37d21eb213f1b785e9ff238ff7a9098e)
5设连续型随机变量X1,X2相互独立,且方差均存在,X1,X2的概率密度分别为f1(x),f2(x),随机变量Y1的概率密度为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image533.png?sign=1739497610-aFUVF3tx2xAgZ9rUXrrnGLfqIj7MMOpM-0-f9934c09a57005600afa968225e3a8fe)
随机变量Y2=(X1+X2)/2,则( ).[数一2014研]
A.EY1>EY2,DY1>DY2
B.EY1=EY2,DY1=DY2
C.EY1=EY2,DY1<DY2
D.EY1=EY2,DY1>DY2
【答案】D
【解析】由期望的定义和性质得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image534.png?sign=1739497610-oSKJZsWD3l8soTFtgfmy4jYI0wlcVOYj-0-3583ec905082b72a19618d13989ab7af)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image535.png?sign=1739497610-oqayO0ep1I3VQT1IuWKMZ1Fn5h6b5Kpa-0-ddc30240f15665e1c453cd5169418f3b)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image536.png?sign=1739497610-kgOBqavvUTgH62jX8qntNeQmYdkBeNC2-0-13bcaf02d05b76c84f652d097e0e6366)
因此,选择D项.
二、填空题
设随机变量X的概率分布为P{x=-2}=1/2,P{x=1}=a,P{x=3}=b,若EX=0,则DX=______.[数三2017研]
【答案】9/2
【解析】由题意知
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image537.png?sign=1739497610-PHiAFIRKJQUW3zLaQ6Yz6qFLaM4uJ32H-0-8522fa25bf87ab3133168d03f59b6fde)
计算得a=b=1/4,从而EX2=(-2)2×(1/2)+12×(1/4)+32×(1/4)=9/2,得
DX=EX2-(EX)2=9/2-0=9/2
三、计算题
1设随机变量X,Y相互独立,且X的概率分布为P{X=0}=P{X=2}=1/2,Y的概率密度为:
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image538.png?sign=1739497610-q30OZnImqzZMTOdf8IOYpeZlNlTSrww1-0-40d57d2ee98dd80b42f2ceb160947e05)
(1)求P{Y≤EY};
(2)求Z=X+Y的概率密度.[数一、数三2017研]
解:(1)计算得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image539.png?sign=1739497610-nBVLFxEmtINGLfAYwTHKjDZXOryL1t42-0-8234e9c9f2fa6dff60bf4d74a67e0330)
则
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image540.png?sign=1739497610-XFgUoKuFbHbL1ZQ50gLyHEAEWTTZOhaw-0-fe641f4f93a6c3f01af28e31b596ee51)
(2)Z的分布函数为FZ(z)=P{Z≤z}=P{X+Y≤z,X=0}+P{X+Y≤z,X=2}=P{X=0,Y≤z}+P{X=2,Y+2≤z}=(1/2)[P{Y≤z}+P{Y≤z-2}]=(1/2)[FY(z)+FY(z-2)],故Z的概率密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image541.png?sign=1739497610-nf7WUdRIopJkrfJyuv66Gh4febmzyLZG-0-1c160369d2fe61a9e50ab83da2e85709)
2设总体X的概率密度为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image542.png?sign=1739497610-RsVxvl0hxE4UGSRi0yVjfCcbKaDreT1j-0-ba6bd6b125a1df8eac08510f5ed92be2)
其中θ∈(0,+∞)为未知参数,X1,X2,X3为来自总体X的简单随机样本,令T=max{X1,X2,X3}.
(1)求T的概率密度;
(2)确定a,使得E(aT)=θ.[数一、数三2016研]
解:(1)计算得
FT(t)=P(T≤t)=P{max(x1,x2,x3)≤t}=P{x1≤t,x2≤t,x3≤t}=P{x1≤t}P{x2≤t}P{x3≤t}=F3(t)
当t≤0时,F(t)=0;
当0<t<θ时
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image543.png?sign=1739497610-A0NY0PmINf9NTBmWkPDW5fxwC528kCl8-0-b2721884672310fc337fa9bda7f81f9d)
当t>θ时,F(t)=1.
所以
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image544.png?sign=1739497610-OMadlkuHSTiXKWlKzCyE3XpjKCCXuhah-0-268b4d74108cb57538f475d5870d4e2d)
所以T的概率密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image545.png?sign=1739497610-aS6x7NRLfeAd85vstKVUEatcavW1RwuS-0-aab2dc868e936b60f8853b7f95db1cdf)
(2)计算得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image546.png?sign=1739497610-NZmiGqTxCinHPNQ5G7f6xuX3xD4GNWTf-0-6c05e000217c0d69745c438917661d65)
因为aT为θ的无偏估计,所以E(aT)=9aθ/10=θ,解得a=10/9.
3设随机变量X的概率密度为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image547.png?sign=1739497610-42yoAUKFV4LYudhp436bMou3AJd2zpt9-0-a01bf59889977660ff523771f7c9f514)
对X进行独立重复的观测,直到2个大于3的观测值出现的停止,记Y为观测次数.
(1)求Y的概率分布;
(2)求EY.[数一、数三2015研]
解:(1)记p为观测值大于3的概率,则
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image548.png?sign=1739497610-epdyNgp3tz2mYAEpfTI9ReTzhE5PGZBA-0-03d57d77f49e9f3e175ac156d8ab197c)
从而
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image549.png?sign=1739497610-u66zwMeColj3EvswjDTUR6EtSoEYE3ub-0-6f761aab13f3744ba6dac94235550d14)
为Y的概率分布.
(2)由已知得
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image550.png?sign=1739497610-A4LjGCaCYUri84EfCZqhDqjm2TCLIp24-0-77fb9567ad0fcc2d569acdaa1f62df93)
记
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image551.png?sign=1739497610-JK7ftZm4GrfuSDDXtEFYLp445f8lrYvd-0-e624c7ef3e041334f63562694819e5ac)
则
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image552.png?sign=1739497610-AUVCblgkd2oLXnFjRYdcxAHWocFisG5I-0-4a2ce428756e53dd7cfc1d45fa65e6ae)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image553.png?sign=1739497610-pCzjnWlThFK7OxBBvoM1HaBPkWdNSiiM-0-47f3f390e90a96c9127641c788edf29c)
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image554.png?sign=1739497610-rTJDkVIMCq7eqovQ0EmJNxfnnnY2s3FQ-0-22ebdae3fda4b7b078e5a10e3549ef37)
所以S(x)=S1(x)-2S2(x)+S3(x)=(2-4x+2x2)/(1-x)3=2/(1-x)
从而E(Y)=S(7/8)=16.
4设随机变量X的分布为P(X=1)=P(X=2)=1/2,在给定X=i的条件下,随机变量Y服从均匀分布U(0,i)(i=1,2).
(1)求Y的分布函数FY(y);
(2)求E(Y)[数一、数三2014研]
解:(1)由题意得随机变量Y的分布函数为
FY(y)=P(Y≤y)=P(Y≤y,X=1)+P(Y≤y,X=2)=P(Y≤y|X=1)P(X=1)+P(Y≤y|X=2)P(X=2)=[P(Y≤y|X=1)+P(Y≤y|X=2)]/2
当y<0时,FY(y)=0;
当0≤y<1时,FY(y)=y/2+(1/2)(y/2)=3y/4;
当1≤y<2时,FY(y)=1/2+(1/2)(y/2)=y/4+1/2;
当y≥2时,FY(y)=1;
故分布函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image555.png?sign=1739497610-SHGlnBaD9arJExBPAFaicV1UhrOqLlJU-0-c89927bba75496b33abd923f3f72e477)
(2)由分布函数得概率密度函数为
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image556.png?sign=1739497610-erHQ0T9H7qIDbC5K0xqJxK5MScUH0pTu-0-84210d9d431974d37814282b96e725d1)
则期望
![](https://epubservercos.yuewen.com/EB11D8/15436719004708906/epubprivate/OEBPS/Images/image557.png?sign=1739497610-9pgk6AFKEbHxNtE89ZMvOu37IE8CuvDn-0-e0ce703a64d44a31fa226b91473c3671)